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As for all low-thrust spacecraft, finding optimal solar sailcraft trajectories is a difficult
and time-consuming task that involves a lot of experience and expert knowledge, since the
convergence behavior of optimizers that are based on numerical optimal control methods
depends strongly on an adequate initial guess, which is often hard to find. Even if the op-
timizer converges to an ”optimal trajectory”, this trajectory is typically close to the initial
guess that is rarely close to the global optimum. This paper demonstrates, that artificial
neural networks in combination with evolutionary algorithms can be applied successfully
for optimal solar sailcraft steering. Since these evolutionary neurocontrollers explore the
trajectory search space more exhaustively than a human expert can do by using tradi-
tional optimal control methods, they are able to find steering strategies that generate
better trajectories, which are closer to the global optimum. Results are presented for a
Near Earth Asteroid rendezvous mission and for a Mercury rendezvous mission.

INTRODUCTION

Traditionally, solar sailcraft trajectories are opti-
mized by the application of numerical optimal control
methods that are based on the calculus of variations.
The convergence behavior of these optimizers depends
strongly on an adequate initial guess, which is needed
prior to optimization. Therefore, depending on the
difficulty and complexity of the problem, finding an
optimal solar sailcraft trajectory usually turns into a
time-consuming task that involves a lot of experience
and expert knowledge. Even if convergence is achieved
by the optimizer, the ”optimal trajectory” is typically
close to the initial guess that is usually far from the
(unknown) global optimum.

Using artificial neural networks (ANNs) in combi-
nation with evolutionary algorithms (EAs) as evolu-
tionary neurocontrollers (ENCs), this paper presents
a novel method for solar sailcraft trajectory optimiza-
tion, that does not depend on an initial guess and
runs without the involvement of a trajectory expert.
Although we have applied this method only to find
optimal solar sailcraft trajectories for various inter-
planetary rendezvous problems, it is not limited to this
problem class but can be adapted for other trajectory
optimization problems (e.g. for different propulsion
systems, for planetocentric motion, for fly-by trajec-
tory optimization etc.).
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SIMULATION MODEL AND
PROBLEM STATEMENT

The magnitude and direction of the solar radia-
tion pressure (SRP) force FSRP acting on a flat and
perfectly reflecting solar sail (ideal sail) due to the mo-
mentum transfer from the solar photons is completely
characterized by the sun-sail distance r and the sail
attitude, which is generally expressed by the sail nor-
mal vector n, whose direction is – according to Fig. 1
– usually described by the sail clock angle α and the
sail cone angle β.

Fig. 1 Definition of the sail clock angle α and the
sail cone angle β

For an ideal sail of area A, the SRP force that is
acting on the sail,

FSRP = 2P0

(r0

r

)2

A cos2 β n, (1)

is always along n (where P0
.= 4.653 µN/m2 denotes

the SRP at r0 = 1 AU).
Since a real solar sail is neither flat nor a perfect re-

flector, a thorough trajectory analysis must take into
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account the optical properties of the real sail, which
are also time-varying due to the erosive effects of the
space environment. However, for preliminary trajec-
tory analysis – as done in this paper – an ideal sail
may be assumed and some further simplifications may
be made:

• The solar sailcraft is moving under the sole influ-
ence of solar gravitation and radiation. The sun
is a point mass and a point light source. Other
celestial bodies are neglected. Also neglected are
disturbing forces, which are much smaller than
the sun’s gravitational force and the SRP force
(e.g. by the solar wind and the aberration of
light).

• The sail attitude can be changed instantaneously.

The orbital dynamics of solar sailcraft is in many
respects similar to the orbital dynamics of other space-
craft, where a small continuous thrust is applied to
modify the spacecraft’s orbit over an extended period
of time. However, other continuous thrust spacecraft
may orient its thrust vector in any desired direction
and vary its thrust level within a wide range, whereas
the thrust vector of solar sailcraft is constrained by
equation (1) to lie on the surface of the ”cos2 β-bubble”
that is always directed away from the sun (Fig. 2).
Nevertheless, by controlling the sail orientation rela-
tive to the sun, solar sailcraft can gain orbital angular
momentum (if FSRP · et > 0) and spiral outwards –
away from the sun – or lose orbital angular momen-
tum (if FSRP · et < 0) and spiral inwards – towards
the sun.

Fig. 2 Spiralling inwards and outwards

This paper deals with the problem of finding the
optimal interplanetary solar sailcraft rendezvous tra-
jectory to a given target body, that is in terms of opti-
mal control theory:1 find a sail normal vector (control
vector) history n[t] (for t0 ≤ t ≤ tf ) which forces the
state x(t) = (r(t), ṙ(t)) of the solar sailcraft from its
initial value x(t0) to the state xT (t) of the target body

(thus obeying the terminal constraint x(tf ) = xT (tf ))
and, at the same time, minimizes the cost function
J =

∫ tf

t0
dt = tf − t0.∗ The resulting state history

x?[t] is the optimal trajectory for the given rendezvous
problem. So the trajectory optimization problem is ac-
tually a problem of finding the optimal control vector
history n?[t].

TRADITIONAL TRAJECTORY
OPTIMIZATION

Traditionally, solar sailcraft trajectories are opti-
mized by the application of numerical optimal control
methods that are based on the calculus of variations.
These methods can be divided into direct methods such
as nonlinear programming (NLP) methods and indi-
rect methods such as neighboring extremal methods
and gradient methods. Prior to optimization, the NLP
methods and the gradient methods require an initial
guess for the control vector history n[t], whereas the
neighboring extremal methods require an initial guess
for the starting adjoint vector of Lagrange multipliers
λλλ(t0) (costate vector).1 The convergence behavior of
all of those methods is very sensitive to the respec-
tive initial guess,2,3 so that trajectory optimization
becomes sometimes ”more art than science”.2 If con-
vergence is achieved, a local optimum is found, which
is typically close to the initial guess and far from the
global optimum. If convergence could not be achieved,
a new initial guess has to be conceived. Since similar
initial guesses often produce very dissimilar optimiza-
tion results, the initial guess can not be improved
iteratively and the search for a good trajectory can
turn into a very time-consuming task.

ARTIFICIAL NEURAL NETWORKS

Being inspired by the processing of information
in animal nervous systems, artificial neural networks
(ANNs) are a computability paradigm that is alter-
native to conventional serial digital computers. ANNs
are massively parallel, analog, fault tolerant and adap-
tive.4,5, 6 They are composed of processing elements
(called neurons) that model the most elementary func-
tions of the biological neuron. Linked together, those
elements show some characteristics of the brain, e.g.
learning from experience, generalizing from previous
examples to new ones and extracting essential charac-
teristics from inputs containing noisy and/or irrelevant
data, so that they are relatively insensitive to minor
variations in its input to produce consistent output.7

Since the neurons can be connected in many ways,
ANNs exist in a wide variety. However, within our
research only feedforward ANNs have been consid-
ered. Typically, feedforward ANNs have a layered

∗Since solar sailcraft do not consume any propellant, only
the transfer time is minimized and – unlike for other spacecraft
– the final mass m(tf ) is not a part of the cost function.
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topology, where the neurons are organized hierarchi-
cally in a number ` of so-called neuron layers. The
first neuron layer is called the input layer and has
n1 input neurons, which receive the network’s input.
The last neuron layer is called the output layer and
has n` output neurons, which provide the network’s
output. All intermediate layers/neurons are called hid-
den layers/neurons.∗ A layered feedforward ANN can
be regarded as a continuous† parameterized function
(called network function)

Φπππ : X ⊆ Rn1 → Y ⊂ Rn`

that maps from a set of inputs X onto a set of outputs
Y. The parameter vector πππ = (π1, . . . , πm) of the net-
work function comprises the m internal parameters of
the ANN (the weights and the biases of the neurons,
see mathematical appendix).

If the correct output is known for a set of given
inputs (the training set), the network error (i.e. the
difference between the actual output and the correct
output) can be measured and utilized to learn the op-
timal network function Φ? := Φπππ? by adapting the
internal parameters in a way that the network error
is minimized. For this kind of learning problems, a
variety of learning algorithms have been developed
to determine the optimal network parameters πππ?, the
backpropagation algorithm – a gradient-based method
– being the most widely known.6

REINFORCEMENT LEARNING
AND NEUROCONTROL

Learning algorithms for ANNs that rely on a train-
ing set fail, when the correct output for a given input
is not known. This is the case for so-called rein-
forcement learning (RL) problems, where the optimal
behavior of the learning system (called agent) has to
be learned solely through interaction with the envi-
ronment, which gives an immediate or delayed scalar
evaluation (reinforcement) of the agent’s behavior.8,9

The optimal behavior of the agent is defined as the
one that maximizes the sum of positive reinforcements
and minimizes the sum of negative reinforcements over
time. Delayed reinforcement learning (DRL) problems
commonly arise in the optimal control of dynamical
systems.8

Operating within so-called neurocontrollers (NCs),
ANNs have been successfully applied to this class of
learning problems.7 Neurocontrol approaches to solve
RL problems can be divided into two categories, indi-
rect ones and direct ones.10,11 The direct neurocontrol
approach, which we used within our research, employs
a single ANN, which is called the action model. The

∗Fig. 7 shows an example for a layered feedforward ANN
with three input neurons, one hidden layer with two hidden
neurons and one output neuron.

†if a sigmoid activation function for the neurons is used, see
mathematical appendix

action model controls the dynamical system by provid-
ing a control vector Y(t) ∈ Y from some input vector
X(t) ∈ X that contains the information that is rele-
vant to perform this task (system state, environmental
state etc.).‡ Henceforth, to keep things simple, we will
use the term ’NC’ for the ANN that is precisely ’the
action model of the NC’.

NCs can also be applied to the optimal control prob-
lem of solar sailcraft trajectory optimization, which is
a DRL problem: if a NC is used to direct the solar sail-
craft’s trajectory by controlling the sail attitude n(t),
then this NC receives a single reinforcement for its
control vector history n[t] (i.e. for its behavior) at the
final time tf , when the trajectory can be evaluated. It
is to note, that the NC’s behavior is completely char-
acterized by its network function Φπππ (that is again
completely characterized by its parameter vector πππ).
The next section will address a learning method for
DRL problems that may be used for determining the
NC’s optimal network function Φπππ?

EVOLUTIONARY ALGORITHMS
AND EVOLUTIONARY

NEUROCONTROL

Evolutionary algorithms (EAs, sometimes also
called genetic algorithms, GAs) are proven to be ro-
bust methods for finding global optima in very high
dimensional search spaces. They have been success-
fully applied as a learning method for ANNs11,13,14,15

as well as for a wide range of other optimization prob-
lems. Therefore, they are also expected to be an
efficient method for finding the NC’s optimal network
function.

EAs use a vocabulary borrowed from biology. The
key element of an EA is a population that comprises
numerous individuals Ak (k ∈ {1, ..., q}), which are
potential solutions to the given optimization problem.
All individuals of the (initially randomly created) pop-
ulation are evaluated according to a fitness function F
(analogous to a cost function) for their suitability to
solve the problem. Their allocated fitness value F (Ak)
is crucial for their probability to reproduce and to cre-
ate offspring into a newly created population, since
a selection scheme (the environment) selects fitter in-
dividuals with a greater probability for reproduction
than less fit ones. The selected parents undergo a series
of ”genetic” transformations (mutation, recombina-
tion) to produce offspring, that consists of a mixture
of the parents ”genetic material”. Under the selection
pressure of the environment, the individuals – which
are also called chromosomes or strings – strive for sur-

‡The more commonly used indirect neurocontrol approach,
which we did not use within our research, employs additionally
a system model and a second ANN, which is called evalua-
tion model. Based on the system model, the evaluation model
provides a prediction of the evaluation of the action that is con-
sidered by the action model.7,10,12
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vival. After some reproduction cycles, the population
converges against a single solution A?, which is in the
best case the globally optimal solution to the given
problem.

The application of an EA to search for the NC’s
optimal network function makes use of the fact, that a
set of NC parameters π1, . . . , πm can be mapped onto
a real valued string of length m, which provides an
equivalent description of the NC’s network function.
By searching for the fittest individual (string) A?, the
EA searches for the NC’s optimal network function Φ?.
Such NCs, which employ an EA for learning, are called
evolutionary neurocontrollers (ENCs).

Before applying a NC to the optimization of solar
sailcraft trajectories, the NC’s input set X and output
set Y have to be defined adequately, i.e. the questions
”what does the NC get as input?” and ”how do we in-
terpret the NC’s output?” or rather ”what is the NC
expected to do?” have to be answered. This is cru-
cial for the NC’s performance on the problem, since
we can not expect the NC to ”make something out of
nothing”. Before providing an answer to those ques-
tions, we have to address strategies for solar sailcraft
steering.

SOLAR SAILCRAFT STEERING

A pure local steering law (PLSLs) may be defined
as a steering law that changes (increases, decreases
or adjusts to some given reference value) some ac-
tual osculating orbital element of solar sailcraft with
a maximum rate. For obtaining PLSLs, we may use
Lagrange’s planetary equations in Gauss’ form,16 since
these equations describe the rate of change of a body’s
osculating elements due to some small (disturbing
and/or propulsive) acceleration. If we have defined
n PLSLs, each PLSL i ∈ {1, . . . , n} gives a direction,
along which the SRP force has to be maximized. This
direction may be expressed by a unit vector fi, called
the optimal thrust unit vector. From fi the related
sail normal vector nfi (and thus the sail clock angle
αfi and the sail cone angle βfi) can be calculated.

To change more than one orbital element at the same
time, the n PLSLs can be mixed. For that reason, a
vector c ∈ [0, 1]n of weight factors (called steering law
weight vector) may be defined in a way, that each c
defines a mixed local steering law (MLSL) by giving
the (mixed) optimal thrust unit vector

f =

n∑
i=1

cifi∣∣∣∣ n∑
i=1

cifi

∣∣∣∣ (2)

from the (pure) optimal thrust unit vectors fi. Again,
the related sail normal vector nf , sail clock angle αf

and sail cone angle βf can be calculated from f .
A sailcraft steering strategy may now be defined as

some function S : X → [0, 1]n, that gives the actual

steering law weight vector c(t) ∈ [0, 1]n from some
vector of input variables X(t) ∈ X . The trajectory
optimization problem may then be reformulated: find
a sail steering strategy S : X → [0, 1]n (for t0 ≤ t ≤ tf )
which forces the state x(t) of the solar sailcraft from its
initial value x(t0) to the state xT (t) of the target body
(thus obeying the terminal constraint x(tf ) = xT (tf ))
and, at the same time, minimizes the cost function
J = tf − t0. The resulting steering strategy S? is
the optimal steering strategy for the given rendezvous
problem. So the trajectory optimization problem is
actually a problem of finding the optimal steering
strategy S?.

To use pure and mixed local steering laws is just
one method for obtaining steering strategies. Since
those steering strategies have implicit knowledge about
how to change the orbital elements in an optimal way,
they can be considered as indirect steering strategies.
However, the implementation of steering strategies is
also possible without the use of local steering laws,
e.g. by providing the optimal thrust unit vector f
directly. Since such steering strategies do not have im-
plicit knowledge about what orbital elements are and
how they can be changed, they can be considered as
direct steering strategies.

SOLAR SAILCRAFT TRAJECTORY
OPTIMIZATION USING

EVOLUTIONARY NEUROCONTROL

For the implementation of solar sailcraft steering
strategies, as defined above, an ENC may be used.
In this case the NC’s parameter vector πππ defines a
steering strategy Sπππ : X → Y and the EA is used to
determine the optimal NC parameter vector πππ? that
results in the optimal steering strategy S? := Sπππ? (that
again results in the optimal sail normal vector history
n?[t] that again results in the optimal solar sailcraft
trajectory x?[t]).

We have considered two different output sets Y, one
representing an indirect steering strategy and one rep-
resenting a direct one:

• the NC provides the steering law weight vector c,
S : X → { c} (indirect steering strategy)

• the NC provides the optimal thrust unit vector f ,
along which the SRP force has to be maximized,∗

S : X → {f} (direct steering strategy)

Since it is reasonable to assume for a robust steering
strategy, that the actual optimal SRP force direction
n(t) depends at any time t on the actual state of the
solar sailcraft x(t) and the target body xT (t), we have
used X = {(x,xT )} for the domain of solar sailcraft
steering strategies, thus S : {(x,xT )} → Y.†

∗The optimal thrust unit vector f can be calculated from
the NC output Y ∈ (0, 1)3 via f = (2Y − 1)/|2Y − 1|.

†It is to note, that a steering strategy that is defined in this
way, does not depend explicitly on time.
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Now the final picture of solar sailcraft steering using
an ENC can be drawn (Fig. 3): To find the optimal
trajectory, the ENC method is running in two loops.
Within the (inner) trajectory integration loop, a NC
steers the solar sailcraft to fly the trajectory that is
completely defined by the NC’s parameters, which are
set by the EA in the (outer) NC optimization loop.

Fig. 3 Trajectory optimization using an evolution-
ary neurocontroller

Fig. 4 Solar sailcraft steering using a neurocon-
troller (trajectory integration loop)

For solar sailcraft steering, the NC takes the actual
state of the solar sailcraft x(t) and that of the target
body xT (t) as input values and maps from them onto
some output values (Fig. 4). If the NC implements
an indirect steering strategy, its n output values are
interpreted as the required steering law weight vector
c(t). Using this steering law weight vector, the op-
timal thrust unit vector f(t) can be calculated from

Langrange’s planetary equations. If the NC imple-
ments a direct steering strategy, its three output values
are directly interpreted as the the required optimal
thrust unit vector f(t). So we can calculate the re-
quired sail normal vector nf (t) (or αf (t) and βf (t))
in both cases. Having done this, we insert the sail
normal vector into the equations of motion and inte-
grate over a time period ∆t to get the solar sailcraft
state x(t + ∆t). This state is fed back into the NC.
The trajectory integration loop stops, when the termi-
nal constraint of the rendezvous problem is practically
satisfied (‖x(t) − xT (t)‖ ≤ εεε) or if some time limit
is reached. Then, in the NC optimization loop, the
NC’s parameter vector (i.e. its trajectory) is rated
by the EA’s fitness function. Since we can not ex-
pect the NC to generate a trajectory that strictly
obeys the final constraint for rendezvous, the con-
straint has to be included into the fitness function, so
that F = F (tf − t0, ‖x(tf ) − xT (tf )‖). As mentioned
above, this fitness is crucial for the probability to re-
produce and to create offspring. Under this selection
pressure, the ENC generates more and more suitable
trajectories. The ENC finally converges against a sin-
gle steering strategy, which gives in the best case a
near-globally∗ optimal trajectory for the rendezvous
problem.

RESULTS

The method described above was applied to a va-
riety of solar sailcraft rendezvous problems. Here,
the results for two mission examples shall be pre-
sented, for which expert-generated trajectories are
available.3,17,18,19,20

The first mission example (Fig. 5) is a Near Earth
Asteroid (NEA) rendezvous with 1996FG3

†, a mission
that will not be too demanding for moderate perfor-
mance sailcraft of the first generation (characteristic
acceleration = maximum acceleration at Earth dis-
tance = ac = 0.14 mm/s2). The second mission exam-
ple (Fig. 6) is a Mercury rendezvous with a more ad-
vanced solar sailcraft (ac = 0.55 mm/s2). Both mission
examples reveal, that the trajectories found by tradi-
tional optimization are far from the global optimum.
The ENC trajectory for the 1996FG3 rendezvous mis-
sion is 52 days (3%) faster than the conventionally
generated trajectory19,20 and reduces the C3 require-
ment from C3 = 4 km2/s2 to C3 = 0km2/s2 (at time
of rendezvous the distance to the target body ∆r is
less than 52 000 km and the relative velocity ∆v is less
than 0.19 km/s). The ENC trajectory for the Mercury
rendezvous mission is 94 days (14%) faster than the
conventionally generated trajectory,3,17,18 both with

∗near-globally, since global optimality can rarely be proven
except by complete enumeration, which is not feasible

†we have also investigated a sample return mission to
1996FG3, including a 140 kg lander and a 40 kg Earth return
capsule (ac = 0.10 mm/s2)21
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Fig. 5 1996FG3 rendezvous trajectory

Fig. 6 Mercury rendezvous trajectory

C3 = 0 km2/s2 (∆r < 44 000 km and ∆v < 0.06 km/s
at time of rendezvous). However, the ENC-generated
trajectories are not optimal solutions in the strict
sense, since the terminal constraint (the rendezvous
condition) is not exactly met. To improve the accu-
racy of the trajectory further, the ENC trajectory can
be taken as the initial guess for a direct numerical op-
timal control method such as NLP.

To perform trajectory optimization with an ENC,
the following parameters have to be fixed:

• the NC’s input set

• the NC’s output set

• the NC’s topology (number of hidden neuron lay-
ers and number of hidden neurons)

• some EA parameters (population size, mutation
rate, selection scheme etc.)

• the EA’s fitness function

We have investigated various combinations of those
parameters. The performance of the ENC was found
to be relatively robust with respect to different set-
tings of most of the parameters. However, it depends
strongly on the choice for the EA’s fitness function.
This is reasonable, since this function has not only to
decide autonomously, which trajectories are good and
which are not, but also which trajectories are promis-
ing for future ”cultivation” and which are not. No final
recommendation can yet be given for the most suitable
set of steering strategies. For most problems, direct
and indirect steering strategies produced similar re-
sults. However, there have been some problems, where
direct or indirect steering was significantly superior.
Regardless of the results, direct steering strategies are
more elegant and have a broader applicability, since in-
direct strategies can not be used for trajectories that
turn hyperbolic.

The NCs that we typically used had a single hidden
layer with about 30 neurons. The maximum number
of integration steps was usually set to values between
200 and 1 000, allowing the NC to change the solar
sailcraft’s attitude every 1 − 10 days. Depending on
the number of integration steps, the total computation
time for one trajectory optimization run was in the
order of one hour on a modern day (1.3 GHz) personal
computer, during which the EA reproduced and tested
about 10 000 trajectories.

CONCLUSIONS

The results shown above indicate clearly, that the
novel method of using an evolutionary neurocontroller
for solar sailcraft steering is a very promising approach
for finding near-globally optimal trajectories. The ob-
tained trajectories are fairly accurate with respect to
the terminal constraint for rendezvous. If a more
accurate trajectory is required, the evolutionary neu-
rocontroller solution can be used as a proper initial
guess for traditional trajectory optimization methods.
However, before evolutionary neurocontrollers could
be considered as a versatile and robust tool for gen-
erating near-globally optimal trajectories by someone
without basic knowledge in astrodynamics, further re-
search on convergence, stability and robust parameter
settings should be done.

Evolutionary neurocontrol may be applied to a wide
variety of low-thrust trajectory optimization problems,
including different propulsion systems, fly-by trajecto-
ries and planetocentric trajectories. Future research
will also focus on multiple rendezvous trajectories and
the question, whether a single steering strategy exists,
that yields near-globally optimal trajectories for all
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interplanetary rendezvous problems (for a given space-
craft).

MATHEMATICAL APPENDIX:
LAYERED FEEDFORWARD

ARTIFICIAL NEURAL NETWORKS

ANNs can be divided into feedforward ones and into
recurrent ones, according to the connectivity of the
neurons. An ANN is a feedforward one, if there exists
a numbering method, which numbers all neurons in a
way, that there is no connection from a neuron with a
number i to a neuron with a number j < i. An ANN
is a recurrent one, if such a numbering method does
not exist.

Each neuron i ∈ N has a so-called activation func-
tion that maps from the neuron’s input value(s) onto a
single output value. The most commonly used activa-
tion function for feedforward networks is the sigmoid
sγ : R → (0, 1), defined by

sγ(x) =
1

1 + e−γx
, (3)

where the constant γ defines the slope of the function.
Typically, feedforward ANNs have a layered topol-

ogy, where the set N of neurons is divided into `
subsets N1, . . . ,N` (called neuron layers) in a way,
that only connections from Nk−1 go to Nk for all
k ∈ {2, . . . , `}. N1 is called the input layer and has
n1 input neurons, which receive the network’s input
X ∈ Rn1 . N` is called the output layer and has n`

output neurons, which provide the network’s output
Y ∈ (0, 1)n` . All other layers/neurons are called hid-
den layers/neurons (if ` > 2). As an example, Fig. 7
shows an ANN with ` = 3 layers, n1 = 3 input neu-
rons, one hidden layer with n2 = 2 hidden neurons and
n3 = 1 output neuron (3-2-1-network).

Using the sγ-activation function, a layered feed-
forward ANN can be described as a directed graph
in which each node (neuron) i in a layer Nk (k ∈
{2, . . . , `}) performs the function

yi =
1

1 + e−γ(
∑

j wijxj−θi)
, (4)

where yi ∈ (0, 1) is the output of neuron i, the
xj ∈ (0, 1) are the output values of the neurons j in
the previous neuron layer Nk−1, the wij ∈ R are the
connection weights between the neurons j and neuron
i, and θi ∈ R is the so-called bias (or threshold) of
neuron i. Each neuron i in the input layer N1 directly
processes one component of the network’s input values
Xi ∈ R by performing the function

yi =
1

1 + e−γ(Xi−θi)
. (5)

Layered feedforward ANNs with the sγ-activation
function for the neurons can be regarded as a continu-
ous parameterized function Φπ1,...,πm : Rn1 → (0, 1)n` ,

Fig. 7 Layered feedforward artificial neural net-
work

called the network function, where the m parameters
of the network function π1, . . . , πm are the connection
weights (wij) and the biases (θi) of the neurons.∗

Using Kolmogorov’s theorem, it can be proven that
any continuous function can be represented exactly by
a finite network of computing units, though the gen-
eral learning problem of determining the values for a
given network’s parameters is NP-complete.6 In sim-
ple terms, this means that it is very improbable that an
algorithm exists that is able to solve the problem in fi-
nite time (within the age of the universe) if the number
of unknown variables gets large, though a guessed so-
lution can be checked in finite time. However, in most
practical cases no exact function representation is de-
manded but a finite approximation error is accepted
for the network function, so that an approximate solu-
tion for the problem can be found in reasonable time.
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quirements for near-term interplanetary solar sailcraft missions.
Versailles, May 2002. 6th International Symposium on Propul-
sion for Space Transportation of the XXIst Century.

8
American Institute of Aeronautics and Astronautics


