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INTERPLANETARY MISSION ANALYSIS FOR
NON-PERFECTLY REFLECTING SOLAR SAILCRAFT

USING EVOLUTIONARY NEUROCONTROL

Bernd Dachwald∗

Solar sailcraft trajectories are typically presented for high-performance sailcraft,
assuming that the sail is an ideal reflector, or considering the non-ideal reflectivity
through an overall efficiency factor. Otherwise, using traditional local trajectory
optimization methods, it is difficult to generate the required initial guess. A real
solar sail, however, is not a perfect reflector and a thorough trajectory simulation
must therefore take into account the optical characteristics of the real sail film
that lead not only to a reduced magnitude of the solar radiation pressure force
but also to a directional deviation.

Within this paper, minimal transfer times for rendezvous missions within the
inner solar system are presented for perfectly and non-perfectly reflecting so-
lar sailcraft, including a typical near-Earth asteroid rendezvous (1996FG3) and
a typical main belt asteroid rendezvous (Vesta). For the different solar radia-
tion pressure force models, the minimal transfer times are compared, extending
thereby the currently available data to moderate-performance sailcraft of the first
generation.

Using evolutionary neurocontrol as a global trajectory optimization method, it

is shown that there is a considerable increase of about 5 − 15% in the minimal

transfer times, if the non-perfect reflectivity of the solar sail is taken into account.

This fact must be considered for a thorough mission analysis. The simplification

that the non-ideal reflectivity of the sail can be modelled with an overall sail

efficiency factor should only be made for very preliminary mission analyses.

INTRODUCTION

Utilizing solely the freely available solar radiation pressure (SRP) for propulsion, solar sails provide
a wide range of opportunities for innovative low-cost high-energy missions, many of which are
difficult or even impossible using any other type of conventional propulsion system.

Employing traditional local trajectory optimization methods (LTOMs) that are based on
optimal control theory, it is – as for all low-thrust spacecraft – usually a difficult and lengthy
task to find time-optimal solar sailcraft trajectories. A lot of experience and expert knowledge is
required to conceive an adequate initial guess that is needed prior to optimization. Even if the
optimizer converges to an ”optimal solution”, this solution is typically a local optimum that is
close to the initial guess, which is rarely close to the global optimum.
∗ Research Engineer. German Aerospace Center (DLR), Cologne, Institute of Space Simulation, Space Missions

and Technologies Section, Linder Hoehe, 51147 Koeln. E-Mail: bernd.dachwald@dlr.de Phone: +49-2203-
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Up to now, solar sailcraft trajectories have been typically presented for high-performance sailcraft,
assuming that the solar sail is an ideal reflector or considering the non-ideal reflectivity through an
overall efficiency factor that reduces only the magnitude of the SRP force but leaves its direction
unaltered (Refs. [1, 2, 3, 4, 5]). In both cases, the direction of the SRP force is always perpendicular
to the sail surface, so that both SRP force models can be considered as models of perfect (i.e.
specular) reflection. The simplification of perfect reflectivity as well as the limitation on high-
performance sailcraft seems to be mainly caused by the difficulty to generate adequate initial
guesses for LTOMs.†

Nevertheless,

1. taking the current state-of-the-art in engineering of ultra-lightweight structures into account,
solar sailcraft of the first generation will be of relatively moderate performance, and,

2. as it will be shown in this paper, a thorough mission analysis must consider the optical prop-
erties of the real non-perfectly reflecting sail film, where the SRP force has also a component
parallel to the sail surface.

It is demonstrated in Refs. [7, 8, 9] that artificial neural networks in combination with evolutionary
algorithms can be applied as evolutionary neurocontrollers for optimal solar sailcraft steering,
and that they are often able to find better trajectories that are closer to the global optimum, since
they explore the trajectory search space more exhaustively than a human expert, using LTOMs,
can do. Using evolutionary neurocontrol as a smart global trajectory optimization method
(GTOM), near-globally optimal trajectories can also be calculated for non-perfectly reflecting solar
sailcraft of moderate performance.

SOLAR RADIATION PRESSURE FORCE MODELS

For the optical characteristics of a solar sail, different assumptions can be made, which result
in different models for the magnitude and direction of the SRP force acting on the sail. The
most simple model assumes an ideally reflecting sail surface. It will here be denoted as model IR
(Ideal Reflection). With the intention to model the non-ideal reflectivity of a real solar sail, an
overall sail efficiency factor η is typically used in the solar sail-related literature that reduces
only the magnitude of the SRP force but leaves its direction unaltered. This model will here be
denoted as model ηPR (η-Perfect Reflection). Since a real solar sail is not a perfect reflector, a
thorough trajectory simulation must employ a more sophisticated SRP force model, which takes
into account the optical characteristics of the real sail film. This model will here be denoted as
model NPR (Non-Perfect Reflection). Table 1 gives an overview of the properties of the three
SRP force models that are considered within this paper.

IR (Ideal Reflection) ideal reflection perfect reflection
ηPR (η-Perfect Reflection) non-ideal reflection perfect reflection
NPR (Non-Perfect Reflection) non-ideal reflection non-perfect reflection

Table 1 SRP force models considered within this paper

All three SRP force models do not take into account the shape of the sail film under load but
assume a plane sail surface. During the study for a comet Halley rendezvous mission with a solar
sail, which has been performed at NASA/JPL in 1976–77, also a numerical parametric force model

† Trajectories for moderate-performance sailcraft involve typically multiple revolutions about the Sun. For non-
perfectly reflecting solar sails, the locally optimal sail attitude can not be derived analytically from the locally
optimal thrust direction, as it might be obtained from local steering laws (like Lagrange’s planetary equations,
Ref. [6] pp. 484–490).
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has been developed, which considers the exact shape of the sail under load (Ref. [10]). Recently,
also numerical analyses to predict the effects of structural wrinkles in the stressed sail film have
been performed (Ref. [11]). Since those models, however, depend essentially on the actual sail
design, they are not used within this paper.

For expressing the SRP force exerted on a solar sail, it is convenient to introduce two unit vectors.
The first one is the sail normal vector n, which is perpendicular to the sail surface and always
directed away from the Sun. Its direction, which describes the sail attitude, is – according to
Figure 1.1 – usually expressed by the sail clock angle α and the sail cone angle β. The second
unit vector is the thrust unit vector f , which points always along the direction of the SRP force.
Its direction is described likewise by the thrust clock angle γ and the thrust cone angle δ –
according to Figure 1.2.

1.1: Definition of the sail clock angle α and the sail
cone angle β

1.2: Definition of the thrust clock angle γ and the
thrust cone angle δ

Figure 1 Definition of the sail normal vector (1.1) and the thrust unit vector (1.2)

The solar radiation pressure (SRP) at a distance r from the Sun is

P =
S0

c

(
1 AU

r

)2
.= 4.563

µN
m2

·
(

1 AU
r

)2

(1)

where S0 = 1368 W/m2 is the well-known solar constant and c is the speed of light in vacuum.

SRP Force Models for Perfect Reflection (models IR and ηPR)

The force exerted on an ideally reflecting solar sail (model IR) can easily be calculated from Figure 2
(see also Ref. [10]). Using er and er′ as the unit vectors along the direction of the incident and the
reflected radiation, the force exerted on the sail due to the incident photons is Fr = PA(er · n)er,
where A(er · n) is the projected sail area along the er-direction. The force exerted on the sail due
to the reflected photons is Fr′ = −PA(er · n)er′ . Therefore, making use of er − er′ = 2(er · n)n,
the total SRP force exerted on the sail is FSRP = Fr + Fr′ = 2PA(er · n)2n, and, making use of
er · n = cos β,

FSRP = 2PA cos2 β n (2)

Looking at Eq. (2), one can see that the SRP force exerted on an ideally reflecting solar sail is
always along the direction of the sail normal vector, f = n.

In the solar sail-related literature, an SRP force model is typically employed that uses an overall
sail efficiency factor η, which is intended to model the non-ideal reflectivity of the sail (model ηPR).
Using this factor, the SRP force acting on the sail is described by

FSRP = 2ηPA cos2 β n (3)
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Figure 2 SRP force on a perfectly reflecting solar sail

Although model ηPR has no physical rationale and, as it will be seen, provides only a crude
approximation of the real sail, it is widely used, because it allows an easy analytical treatment of
solar sail mechanics (since also f = n).

SRP Force Model for Non-Perfect Reflection (model NPR)

Since a real solar sail is not a perfect reflector, a thorough trajectory simulation must consider the
optical characteristics of the real sail film, which can be parameterized by the absorption coefficient
α, the reflection coefficient ρ, the transmission coefficient τ , and the emission coefficient ε, with
the constraint α+ρ+τ = 1. Assuming τ = 0 for the reflecting side of the solar sail, the absorption
coefficient is α = 1 − ρ. Since for a real solar sail not all photons are reflected specularly, the
reflection coefficient can be further divided into a coefficient for specular reflection ρs, a coefficient
for diffuse reflection ρd, and a coefficient for back reflection ρb, with the constraint ρs +ρd +ρb = ρ.
Assuming ρb = 0, this can also be expressed by introducing a specular reflection factor s, so that
s = ρs/ρ and thus ρs = sρ and ρd = (1− s)ρ.

Figure 3 SRP force on a non-perfectly reflecting solar sail

It can be shown (see Ref. [10] for derivation) that, using those optical parameters, the SRP force
exerted on the solar sail has a normal component Fn and a transversal component Ft (see Figure 3)
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with

Fn = PA

(
(1 + sρ) cos β + Bf(1− s)ρ + (1− ρ)

εfBf − εbBb

εf + εb

)
cos β n (4a)

Ft = PA(1− sρ) sinβ cos β t (4b)

where t is a transverse unit vector perpendicular to n (so that t ·er ≥ 0), εf and εb are the emission
coefficients of the sail’s front and back side, and Bf and Bb are the non-Lambertian coefficients
of the sail’s front and back side. Wright gives in Ref. [5] values for the optical coefficients for
a sail with a highly reflective aluminum-coated front side and a highly emissive chromium-coated
back side, to keep the sail temperature at a moderate limit (Table 2).

front side back sideparameter
(Al-coated) (Cr-coated)

ρ 0.88
s 0.94
ε 0.05 0.55
B 0.79 0.55

Table 2 Optical coefficients for an Al|Cr-coated solar sail

Using the values given in Table 2, three characteristic optical sail film coefficients may be defined
to simplify Eqs. (4) (Ref. [12]):

G = 1 + sρ = 1.8272 (5a)

K = Bf(1− s)ρ + (1− ρ)
εfBf − εbBb

εf + εb
= −0.010888 (5b)

H = 1− sρ = 0.1728 (5c)

so that

Fn = PA (G cos β + K) cos β n (6a)
Ft = PAH sinβ cos β t (6b)

The total SRP force vector may then be written as

FSRP =
√

F 2
n + F 2

t f = PA

√
(G cos β + K)2 + H2 sin2 β cos β f (7)

and, by defining Q(β) = 1
2

√
(G cos β + K)2 + H2 sin2 β cos β

FSRP = 2PAQ(β) f (8)

where Q(β) depends only on the sail cone angle β and the optical coefficients of the sail film.
The angle between f and er is the thrust cone angle δ and the angle between f and n is called
centerline angle ε. It may be calculated via

ε = arctan
(

Ft

Fn

)
= arctan

(
H sinβ

G cos β + K

)
(9)

Eq. (9) gives then also the relation for the thrust cone angle:

δ = β − ε = β − arctan
(

H sinβ

G cos β + K

)
(10)
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SRP Force Model Comparison

The orbital dynamics of solar sailcraft is in many respects similar to the orbital dynamics of other
low-thrust spacecraft; however, as Figure 4 shows, other low-thrust spacecraft may orient its thrust
vector into any desired direction, whereas the thrust vector of solar sailcraft is constrained to lie on
the surface of a ”bubble” that is always directed away from the Sun. Nevertheless, by controlling
the sail orientation relative to the Sun, solar sailcraft can gain orbital angular momentum and
spiral outwards – away from the Sun – or lose orbital angular momentum and spiral inwards –
towards the Sun.

Figure 4 Spiralling towards the Sun and away from the Sun

For the models IR and ηPR, the SRP force is always perpendicular to the sail surface, f = n. This
allows an easy analytical treatment of solar sail steering problems. If d denotes the unit vector
along the desired thrust direction, the thrust unit vector f must point into the direction f∗ that
maximizes the SRP force along d; f∗ can be derived analytically from d (Ref. [9]):

γ∗ = arctan(dh, dt) (11a)

δ∗ = arccot

(
3
2

dr√
d2

t + d2
h

+

√
9
4

d2
r

d2
t + d2

h

+ 2

)
(11b)

where arctan(dh, dt) is an extended arcustangens, which gives the angle γ∗ such that dh = sin γ∗

and dt = cos γ∗. The sail normal vector n – as expressed by the sail clock angle α and the sail cone
angle β – is the spacecraft control vector u = (α, β). The problem is to determine u so that
f = f∗. For models IR and ηPR, n∗ = f∗ and thus α∗ = γ∗ and β∗ = δ∗. For model NPR, n∗ can
not be calculated analytically from f∗, since the Q(β)-expression can not be resolved for β. Hence,
the spacecraft control vector that maximizes the SRP force along the desired thrust direction can
not be obtained analytically.

Although the models IR and ηPR allow the analytical treatment of solar sail steering problems,
they misrepresent the normal SRP force component Fn and completely ignore the transverse SRP
force component Ft. In doing so, both models ignore the deviation of the thrust cone angle from
the sail cone angle. Figure 5.1 shows how this deviation becomes larger as the light incidence angle
increases. As a consequence, the SRP force in model NPR is not only smaller than in model IR
(which is also taken into account by model ηPR) but also much more constrained in its direction
(Figure 5.1 shows that there is a maximum thrust cone angle of 55.5◦ for a sail cone angle of 72.6◦).
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5.1: Angular deviations for the standard SRP force
model (adapted from Ref. [10])

5.2: SRP force ”bubbles” for the different SRP force
models

Figure 5.2 shows for each SRP force model the ”bubble” on whose surface the SRP force vector tip
is constrained to lie (vector tail at origin). From the perspective of trajectory analysis, model ηPR
is equivalent to model IR, since the shape of both bubbles is identical. A decrease in sail efficiency
η can always be offset with a proportional increase in sail area, so that both bubbles have the same
shape and size. This equivalency is not the case for model NPR. Even if the cos2 β-bubble and the
Q(β)-bubble are scaled to the same size, their shape is different.

SOLAR SAILCRAFT PERFORMANCE PARAMETERS

Eqs. (3) and (8) may also be expressed in terms of the characteristic acceleration ac or in terms
of the lightness number λ, which are the prevalent performance parameters for solar sailcraft.

Characteristic Acceleration

The characteristic acceleration is defined as the SRP acceleration acting on a solar sail that is
oriented perpendicular to the Sun-line at 1AU, where FSRP = Fc, the characteristic SRP force.
For model ηPR, one gets

ac =
Fc

m
= 2η

S0

c

A

m
(12)

The SRP force may then be written as

FSRP = mac

(
1 AU

r

)2

cos2 β n (13)

For model NPR, one gets

ac =
Fc

m
= (G + K)

S0

c

A

m
(14)
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The SRP force may then be written as

FSRP = mac

(
1 AU

r

)2 2Q(β)
G + K

f = mac

(
1 AU

r

)2

Q′(β) f (15)

Comparing Eqs. (12) and (14), one can see that in order to get the same characteristic acceleration
for model ηPR and model NPR, one has to set η = (G + K)/2 ( .= 0.908 for the optical coefficients
given in Table 2).

Lightness Number

The lightness number is defined as the ratio of the SRP acceleration acting on a solar sail that is
oriented perpendicular to the Sun-line, and the gravitational acceleration of the Sun, aG(r) = µ/r2:

λ =
ac · (1 AU/r)2

µ/r2
=

ac · 1 AU2

µ
=

ac

aG(1AU)
(16)

with aG(1 AU) .= 5.930 mm/s2 as the Sun’s gravitational acceleration at Earth distance. Since
both accelerations have an inverse square variation in r, the lightness of solar sailcraft is – unlike
the maximum acceleration – independent of the Sun–sail distance. Using Eq. (16), the SRP force
may be written as

FSRP = λ
µm

r2
cos2 β n (17)

for model ηPR and

FSRP = λ
µm

r2
Q′(β) f (18)

for model NPR.

EVOLUTIONARY NEUROCONTROL

Here, only a summary of evolutionary neurocontrol (ENC) can be given. The reader who is
interested in details of this novel low-thrust trajectory optimization method is referred to Refs. [7,
8, 9].

It can be shown that the problem of searching an optimal spacecraft trajectory x?
SC[t] = (r?

SC, ṙ?
SC)[t]

is equivalent to the problem of searching an optimal spacecraft control function u?[t]. Usually,
optimal control methods that are based on the calculus of variations are employed to solve this
kind of problems. Within this paper, spacecraft trajectory optimization has been attacked from
a perspective different to that of optimal control: the perspective of artificial intelligence and
machine learning. Within this context, a trajectory can be regarded as the result of a spacecraft
steering strategy S that maps the problem relevant variables (e.g. the spacecraft state xSC and
the target body state xT) onto the spacecraft control vector, S : {xSC,xT} ⊂ R12 7→ {u} ⊂ R2.
This way, the problem of searching the optimal spacecraft trajectory is equivalent to the problem of
searching (or ”learning”) the optimal spacecraft steering strategy S?. An artificial neural network
(ANN) may be used as a so-called neurocontroller (NC) to implement such spacecraft steering
strategies. It can be regarded as a parameterized function Nπππ (the network function) that is – for
a given network topology – completely defined by the internal parameter vector πππ ∈ Rnπ of the
network. Therefore, each πππ defines a steering strategy Sπππ. The problem of searching the optimal
spacecraft trajectory is thus equivalent to the problem of searching the optimal parameter vector πππ?

for a given neurocontroller. Evolutionary algorithms (EAs) that work on a population of strings
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can be used for finding the optimal network parameters, since the NC parameter vector πππ can
be mapped onto a string ξ (also called chromosome or individual). The trajectory optimization
problem is solved, when the optimal chromosome ξ? is found. Figure 5 sketches the subsequent
transformations of the optimal chromosome into the optimal trajectory.�

�
�
�

optimal chromosome/individual/string ξ?

=
optimal NC parameter vector πππ?

�
�

�
�

optimal NC network function N?

=
optimal spacecraft steering strategy S?

�� ��optimal spacecraft control function u?[t]

�� ��optimal spacecraft trajectory x?
SC[t]

?

?

?

Figure 5 From the optimal chromosome to the optimal trajectory

A neurocontroller that employs an evolutionary algorithm for ”learning” (or ”breeding”) the opti-
mal control strategy might be called evolutionary neurocontroller.

SIMULATION MODEL

Besides the gravitational forces of all celestial bodies and the SRP force, many ”disturbing” forces
– as caused, e.g., by the solar wind and the aberration of solar radiation (Poynting–Robertson
effect) – are influencing the motion of solar sailcraft. Ideally, all these forces have to be considered
for a thorough mission analysis. However, for mission feasibility analysis, as done within this paper,
only ”preliminary” trajectory analysis needs to be done, which allows some simplifications:

1. Solar sailcraft is moving under the sole influence of solar gravitation and radiation. The Sun
is a point mass and a point light source. All disturbing forces that are small in magnitude
– compared to gravitation and solar radiation pressure – are neglected. Also ignored are
the gravitational and radiative forces of other celestial bodies (including the launch and the
target body).

2. The solar sailcraft’s attitude can be changed instantaneously.

3. The sail film does not degrade over time.

EQUATIONS OF MOTION

Within this section, the equations of heliocentric translational motion within the given simulation
model are derived for perfectly and non-perfectly reflecting solar sailcraft. Ignoring second order
effects, the acceleration of solar sailcraft is simply obtained by adding the Sun’s gravitational
acceleration and the SRP acceleration:

r̈ = aG + aSRP (19)
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Resolving this equation along the unit vectors of the ecliptic reference frame E = (er, eϕ, eθ)
(Figure 6.1) will then give three 2nd order differential equations for r̈, ϕ̈, and θ̈ respectively.

6.1: Ecliptic reference frame E 6.2: Orbit reference frame O

Perfect Reflection (models IR and ηPR)

Using Eq. (17), one gets for the models IR and ηPR

r̈ = λ
µ

r2
cos2 β n− µ

r2
er (20)

Resolving n along the unit vectors of the orbit reference frame O = (er, et, eh) (Figure 6.2), one
obtains

n = cos βer + cos α sinβet + sinα sinβeh (21)

and after transformation into the E-frame

n = cos βer + cos(α + ζ) sinβeϕ + sin(α + ζ) sinβeθ (22)

By introducing three dimensionless control functions u′
1 to u′

3, depending only on the two control
variables α and β, and on the local E-O-rotation angle ζ

u′
1(β) = cos3 β (23a)

u′
2(α + ζ, β) = cos(α + ζ) sinβ cos2 β (23b)

u′
3(α + ζ, β) = sin(α + ζ) sinβ cos2 β (23c)

and using Eq. (22), one may write the acceleration of the solar sailcraft in E-frame components as:

r̈ = (λ
µ

r2
u′

1 −
µ

r2
)er + λ

µ

r2
u′

2eϕ + λ
µ

r2
u′

3eθ (24)

Expressing r̈ in spherical coordinates, one gets – after some rearrangement – three component
equations:

r̈ = rθ̇2 + rϕ̇2 cos2 θ − µ

r2
+ λ

µ

r2
u′

1 (25a)

ϕ̈ = −2
ṙϕ̇

r
+ 2ϕ̇θ̇ tan θ + λ

µ

r2

u′
2

r cos θ
(25b)

θ̈ = −2
ṙθ̇

r
− ϕ̇2 sin θ cos θ + λ

µ

r2

u′
3

r
(25c)
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Non-Perfect Reflection (model NPR)

Using Eq. (18), one gets for model NPR

r̈ = λ
µ

r2
Q′(β) f − µ

r2
er (26)

Resolving f along the O-frame unit vectors, one obtains

f = cos δer + cos γ sin δet + sin γ sin δeh (27)

and after transformation into the E-frame

f = cos δer + cos(γ + ζ) sin δeϕ + sin(γ + ζ) sin δeθ (28)

where γ = α and δ = β−arctan
(

H sin β
G cos β+K

)
. By introducing three dimensionless control functions

u′
1 to u′

3, depending only on the two control variables α and β, the local E-O-rotation angle ζ, and
the optical characteristics of the sail film

u′
1(β) = Q′(β) cos δ(β) (29a)

u′
2(α + ζ, β) = Q′(β) cos(α + ζ) sin δ(β) (29b)

u′
3(α + ζ, β) = Q′(β) sin(α + ζ) sin δ(β) (29c)

one gets again Eq. (24) and thus again Eqs. (25) but with different control functions.

MINIMAL TRANSFER TIMES FOR PERFECTLY REFLECTING SO-
LAR SAILCRAFT (MODELS IR AND ηPR)

Using evolutionary neurocontrol (ENC) for solar sailcraft trajectory optimization, minimal trans-
fer times to various solar system bodies (and for an exemplary 10◦ inclination change at 1 AU
for a circular initial and target orbit) have been calculated. Sauer gives in Ref. [4] minimal
transfer times to Mercury, Venus, and Mars for perfectly reflecting high-performance sailcraft with
0.5 mm/s2 . ac . 2.5 mm/s2 (Figure 6).

Figure 6 Upper and lower bound for minimal transfer times to Mercury, Venus, and Mars that are given
by Sauer, Ref. [4] (only lower bound for Mercury, diagram taken from Wright, Ref. [5])
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To verify the transfer times given by Sauer and to extend them to solar sailcraft of moderate
performance (ac . 0.5 mm/s2) and extremely high performance (ac & 2.5 mm/s2), minimal orbit
transfer times to various targets have been calculated for characteristic accelerations in the range
0.1 mm/s2 ≤ ac ≤ 10.0 mm/s2. The results are presented in Figure 7.‡

7.1: 0.1mm/s2 ≤ ac ≤ 1.0mm/s2

7.2: 0.1mm/s2 ≤ ac ≤ 10.0mm/s2

Figure 7 Minimum orbit transfer times for perfectly reflecting solar sailcraft

‡ Note that the solution of the orbit transfer problem yields the absolute minimum for the transfer time, in-
dependent of the constellation of the initial and the target body. The optimal launch constellation for the
rendezvous problem can then be deduced from the optimal solution of the orbit transfer problem.
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For 0.5 mm/s2 . ac . 2.5 mm/s2, they are consistent with the minimum curves in Figure 6 (see
Figure 7.2). The ENC-results, however, also reveal two performance-regimes. For moderate-
performance sailcraft (ac . 0.5 mm/s2) as well as for high-performance sailcraft (ac & 1.0 mm/s2),
the minimum transfer times Tmin can be approximated with very simple functions of the form

Tmin

1 day
=

c1

( ac

1 mm/s2 )c2
(30)

The values for c1 and c2 depend obviously on the target body. It can be speculated that they are
a function of the initial and the target body’s orbital elements (quod esset demonstrandum). For
example, the approximation function

Tmin,Mercury

1 day
=

255
ac

1 mm/s2

gives for 0.1 mm/s2 ≤ ac ≤ 0.75 mm/s2 a maximum error of 4.2% for the Earth-Mercury transfer.
For the Earth-1996FG3 transfer, the approximation function

Tmin,1996FG3

1 day
=

146
( ac

1 mm/s2 )1.127

gives for 0.1 mm/s2 ≤ ac ≤ 1.0 mm/s2 a maximum error of 5.5%. Within the high-performance
regime, the flight time gain due to a better sail performance is smaller. Between the two regimes, the
curves bend sharply (Figure 7.2). Since the optimal trajectories for solar sailcraft to spiral inwards
or outwards are logarithmic spirals, the reduced flight-time gain in the high-performance regime is
more pronounced for near-circular target orbits, since they require a final ”circularization” of the
spiral. Where such a circularization is not required, the bending of the curves is less pronounced
(1996FG3, and for the 10◦ inclination change, for which the optimal transfer trajectory is not a
logarithmic spiral).

MINIMAL TRANSFER TIMES FOR NON-PERFECTLY REFLECT-
ING SOLAR SAILCRAFT (MODEL NPR)

Solar sailcraft trajectory/mission analyses usually employ model IR/ηPR. The only known calcu-
lations for model NPR have been done in Ref. [13], where a simple Earth-Venus-transfer and a
simple Earth-Mars-transfer were calculated using a local trajectory optimization method (direct
collocation method).

Within this section, the minimal orbit transfer times for solar sailcraft are calculated using model
NPR. The results are compared to the transfer times that have been obtained above for perfectly
reflecting solar sailcraft. For all calculations, the size of the SRP force bubbles was the same
(ac,NPR = ac,IR/ηPR). Figure 8 shows a comparison of the minimal transfer times to various solar
system bodies for perfectly and for non-perfectly reflecting solar sailcraft.

As the results show, there is a considerable increase of about 5 − 15% in minimal orbit transfer
time, if model NPR is used, being larger for trajectories that require large sail cone angles, where
the difference between the perfect and the non-perfect bubble is larger (see Figure 5.2). It might be
argued that trajectory optimization for non-perfectly reflecting solar sails is more difficult for the
ENC method, so that it fails to find globally optimal solutions. Although a part of the differences
might be attributed to this cause, such an explanation is unlikely to explain the entire differences.
The results are in accordance with the result in Ref. [13], where an increase of 7.8% in transfer
time had been obtained for a simple Earth-Mars-transfer (ac

.= 1.5 mm/s2). For a simple Earth-
Venus-transfer, an increase of even 24% in transfer time (306 days for ac

.= 0.55 mm/s2) had been
obtained in Ref. [13], which suggests, however, that the trajectory is far from the global optimum
(ENC optimization yields a minimum transfer time of 268 days for exactly the same problem).
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Figure 8 Comparison of minimum orbit transfer times for perfectly and non-perfectly reflecting solar
sailcraft

The results demonstrate that for a thorough mission analysis the non-perfect reflectivity of the
solar sail must be considered through an appropriate SRP force model. The simplification that
the non-ideal reflectivity of the sail can be taken into account by using an overall efficiency factor
η, should only be made for very preliminary mission feasibility analyses.
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SUMMARY AND CONCLUSIONS

Using evolutionary neurocontrol as a global trajectory optimization method, minimal transfer times
for rendezvous missions to inner solar system bodies have been calculated for perfectly and for non-
perfectly reflecting solar sailcraft. Thereby, the currently available data was extended to moderate-
performance sailcraft and in the case of perfect reflection also to very-high performance sailcraft.
For perfectly reflecting solar sailcraft, two performance-regimes have been found – one for moderate-
performance sailcraft and one for high-performance sailcraft – in which the minimum transfer times
can be approximated with very simple functions. Within the high-performance regime, the flight
time gain due to better sail performances is smaller, especially for near-circular target orbits,
where a circularization of the logarithmic transfer spiral is required. Trajectory optimization
using evolutionary neurocontrol revealed that for non-perfectly reflecting solar sailcraft there is a
considerable increase of about 5− 15% in the minimal transfer times that must be considered for
a thorough mission analysis. The simplification that the non-ideal reflectivity of a real solar sail
can be taken into account by using an overall sail efficiency factor should therefore only be made
for very preliminary mission analyses.
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