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Searching optimal low-thrust trajectories is usually a difficult and time-consuming task
that involves much experience and expert knowledge. This is because the convergence
behavior of traditional optimizers, which are based on numerical optimal control methods,
depends on an adequate initial guess, which is often hard to find. Even if the optimizer
converges to an optimal trajectory, this is typically close to the initial guess and rarely close
to the (unknown) global optimum. Therefore, those methods are called local trajectory
optimization methods. Within this paper, trajectory optimization problems are attacked
from the perspective of artificial intelligence and machine learning. Inspired by natural
archetypes, a smart global method for low-thrust trajectory optimization is proposed that
fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neu-
rocontrollers. This novel method runs without an initial guess and does not require the
attendance of an expert in astrodynamics and optimal control theory. This paper details
how evolutionary neurocontrol works and how it could be implemented. Furthermore, the
performance of the method is assessed for two exemplary interplanetary missions.

I. Introduction

This paper deals with the problem of searching optimal interplanetary trajectories for low-thrust space-
craft. Two propulsion systems are considered: solar sails (large ultra-lightweight reflecting surfaces that
utilize solely the freely available solar radiation pressure for propulsion) and solar electric propulsion (SEP)
systems. The optimality of a trajectory can be defined according to several objectives, like transfer time or
propellant consumption. Because solar sails do not consume any propellant, their trajectories are typically
optimized with respect to transfer time alone. Trajectory optimization for spacecraft with a SEP system is
less straightforward because transfer time minimization and propellant minimization are mostly competing
objectives, so that one objective can only be optimized at the cost of the other. Spacecraft trajectories can
also be classified with respect to the terminal constraint. If, at arrival, the position rSC and the velocity ṙSC

of the spacecraft must match that of the target (rT and ṙT, respectively), one has a rendezvous problem.
If only the position must match, one has a flyby problem. A spacecraft trajectory is obtained from the
(numerical) integration of the spacecraft’s equations of motion. Besides the inalterable external forces, the
trajectory xSC[t] = (rSC[t], ṙSC[t]) is determined entirely by the variation of the thrust vector (’[t]’ denotes
the time history of the preceding variable). The thrust vector F(t) of low-thrust propulsion systems is a
continuous function of time. It is manipulated through the nu-dimensional spacecraft control function u(t)
that is also a continuous function of time. Therefore, the trajectory optimization problem is to find the
optimal spacecraft control function u?(t) that yields the optimal trajectory x?

SC[t]. This problem can not be
solved except for very simple cases. What can be solved, at least numerically, however, is a discrete approx-
imation of the problem. Dividing the allowed transfer time interval [t0, tf,max] into τ finite elements, the
discrete trajectory optimization problem is to find the optimal spacecraft control history u?[t̄] ∈ Rnuτ that
yields the optimal trajectory x?

SC[t] (the symbol t̄ denotes a discrete time step; note that only the spacecraft
control function is discrete, whereas the trajectory is still continuous). Through discretization, the problem
of finding the optimal function u?(t) in infinite-dimensional function space is reduced to the problem of
finding the optimal control history u?[t̄] in a nuτ -dimensional parameter space (a space which is usually still
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very high-dimensional). For optimality, some cost function J must be minimized. If the propellant mass mP

is to be minimized, J = mP(t̄0) −mP(t̄f ) = ∆mP is an appropriate cost function, if the transfer time is to
be minimized, J = t̄f − t̄0 = T is an appropriate cost function.

II. Traditional Local Low-Thrust Trajectory Optimization Methods

Traditionally, low-thrust trajectories are optimized by the application of numerical optimal control meth-
ods that are based on the calculus of variations. These methods can be divided into direct methods, such
as nonlinear programming (NLP) methods, and indirect methods, such as neighboring extremal methods
and gradient methods. All these methods can generally be classified as local trajectory optimization meth-
ods (LTOMs), where the term optimization does not mean finding the best solution but rather finding a
solution.1 Prior to optimization, the NLP methods and the gradient methods require an initial guess for
the control history u[t̄], whereas the neighboring extremal methods require an initial guess for the starting
adjoint vector of Lagrange multipliers λλλ(t̄0) (costate vector).2 Unfortunately, the convergence behavior
of LTOMs (especially of indirect methods) is very sensitive to the initial guess, so that an adequate initial
guess is often hard to find, even for an expert in astrodynamics and optimal control theory. Similar initial
guesses often produce very dissimilar optimization results, so that the initial guess can not be improved
iteratively and trajectory optimization becomes more of an art than science.3 Even if the optimizer finally
converges to an optimal trajectory, this trajectory is typically close to the initial guess that is rarely close
to the (unknown) global optimum. Because the optimization process requires nearly permanent attendance
of the expert, the search for a good trajectory can become very time-consuming and expensive. Another
drawback of LTOMs is the fact that the initial conditions (launch date, initial propellant mass, hyperbolic
excess velocity vector, etc.) – although they are crucial for mission performance – are generally chosen
according to the expert’s judgment and are therefore not part of the actual optimization method.

III. Evolutionary Neurocontrol: A Smart Global Low-Thrust Trajectory
Optimization Method

To evade the drawbacks of LTOMs, a smart global trajectory optimization method (GTOM) was devel-
oped by the author.4 This method was termed InTrance, which stands for Intelligent Trajectory optimization
using neurocontroller evolution. To find a near-globallya optimal trajectory, InTrance requires only the tar-
get body and intervals for the initial conditions as input. Implementing evolutionary neurocontrol (ENC),
InTrance runs without an initial guess and does not require the attendance of a trajectory optimization ex-
pert. The remainder of this section will sketch the motivation for ENC and explain the underlying concepts,
as well as the application of ENC to solve low-thrust trajectory optimization problems.

A. Motivation for Evolutionary Neurocontrol

ENC fuses artificial neural networks (ANNs) and evolutionary algorithms (EAs) into so-called evolutionary
neurocontrollers (ENCs). Like the underlying concepts, it is inspired by the natural processes of information
processing and optimization. Animal nervous systems incorporate natural evolutionary neurocontrollers to
control their actions, giving them marvelous capabilities. The smart flight control system of the housefly
might provide an example. The nervous system of the housefly comprises about 105 neurons. This small
natural neural network manages the flight control of the fly, as well as many even more difficult tasks. Nature
has optimized the performance of the fly’s neurocontroller on this tasks through the recombination and
mutation of the fly’s genetic material and through natural selection: smarter flies produce more offspring
and there is a high probability that some of them are even smarter than their parents. So, if a natural
evolutionary neurocontroller is able to steer a housefly optimally from A to B, why should an artificial
evolutionary neurocontroller not be able to steer a spacecraft optimally from A to B, which seems to be
a much simpler problem? The remainder of this section will describe how such an artificial evolutionary
neurocontroller could be implemented.

aNear -globally optimal because global optimality can rarely be proved for real-world problems.

2 of 16

American Institute of Aeronautics and Astronautics



B. Machine Learning

Within the field of artificial intelligence, one important and difficult class of learning problems are reinforce-
ment learning problems, where the optimal behavior of the learning system (called agent) has to be learned
solely through interaction with the environment, which gives an immediate or delayed evaluationb J (also
called reward or reinforcement).5,6 The agent’s behavior – it’s strategy – is defined by an associative map-
ping from situations to actions S : X 7→ Ac. The optimal strategy S? of the agent is defined as the one that
maximizes the sum of positive reinforcements and minimizes the sum of negative reinforcements over time.
If, given a situation X ∈ X , the agent tries an action A ∈ A and the environment immediately returns a
scalar evaluation J(X, A) of the (X, A) pair, one has an immediate reinforcement learning problem. A more
difficult class of learning problems are delayed reinforcement learning problems, where the environment gives
only a single evaluation J(X, A)[t], collectively for the sequence of (X, A) pairs occurring in time during the
agent’s operation.

From the perspective of machine learning, a spacecraft steering strategy may be defined as an associative
mapping S that gives – at any time along the trajectory – the current spacecraft control u(t̄) from some
input X(t̄) ∈ X that comprises the variables that are relevant for the optimal steering of the spacecraft (the
current state of the relevant environment). Because the trajectory is the result of the spacecraft steering
strategy, the trajectory optimization problem is actually a problem of finding the optimal spacecraft steering
strategy S?. This is a delayed reinforcement problem because a spacecraft steering strategy can not be
evaluated before its trajectory is known. Only then a reward can be given according to the fulfillment of the
optimization objective(s) and constraints. One obvious way to implement spacecraft steering strategies is to
use artificial neural networks because they have been successfully applied to learn associative mappings for
a wide range of problems.

C. Artificial Neural Networks and Neurocontrol

Being inspired by the processing of information in animal nervous systems, ANNs are a computability
paradigm that is alternative to conventional serial digital computers. ANNs are massively parallel, analog,
fault tolerant, and adaptive.7 They are composed of processing elements (called neurons) that model the
most elementary functions of biological neurons. Linked together, those elements show some characteristics
of the brain, for example, learning from experience, generalizing from previous examples to new ones and
extracting essential characteristics from inputs containing noisy and/or irrelevant data, so that they are
relatively insensitive to minor variations in its input to produce consistent output.8

Because the neurons can be connected in many ways, ANNs exist in a wide variety. Here, however, only
feedforward ANNs are considered. Feedforward ANNs have typically a layered topology, where the neurons
are organized in a number of neuron layers. The first neuron layer is called the input layer and has ni

input neurons that receive the network’s input. The last neuron layer is called the output layer and has
no output neurons that provide the network’s output. All intermediate layers/neurons are called hidden
layers/neurons. A feedforward ANN, as it is used here, can be regarded as a continuous parameterized
function (called network function)

Nπππ : X ⊆ Rni → Y ⊆ (0, 1)no

that maps from a set of inputs X onto a set of outputs Y. The parameter set πππ = {π1, . . . , πm} of the
network function comprises the m internal parameters of the ANN (the weights of the neuron connections
and the biases of the neurons).

ANNs have been successfully applied as neurocontrollers (NCs) to reinforcement learning problems.8 An
ANN controls a dynamical system by providing a control Y(t) ∈ Y from some input X(t) ∈ X that contains
the relevant information for the control task. Note that the NC’s behavior is completely characterized by
its network function Nπππ (that is again completely characterized by its parameter set πππ). If the correct
output is known for a set of given inputs (the training set), the difference between the given output and the
correct output can be utilized to learn the optimal network function N? := Nπππ? by adapting πππ in a way that
minimizes this difference for all input/output pairs in the training set. A variety of learning algorithms has
been developed for this kind of learning, the backpropagation algorithm – a gradient-based method – being
the most widely known. Unfortunately, learning algorithms that rely on a training set fail when the correct

bThis evaluation is analogous to the cost function in optimal control theory. To emphasize this fact, it will be denoted by
the same symbol, J .

cX is called state space and A is called action space.
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output for a given input is not known, as it is the case for delayed reinforcement learning problems. The
next section will address a learning method that may be used for determining N? in this case.

D. Evolutionary Algorithms and Evolutionary Neurocontrol�
�

�
�

chromosome/individual/string ξ

=
NC parameter set πππ

�
�

�
�

NC network function N

=
spacecraft steering strategy S

�� ��spacecraft control function u[t]

�� ��spacecraft trajectory xSC[t]

?

?

?

Figure 1. Transformation of a chromo-
some into a trajectory

EAs are robust methods for finding global optima in very high di-
mensional search spaces. They have been successfully applied as a
learning method for ANNs,9–11 as well as for a wide range of other op-
timization problems. EAs use a vocabulary borrowed from biology.
The key element of an EA is a population that comprises numerous
individuals ξj∈{1,...,q}, which are potential solutions for the given
optimization problem. All individuals of the (initially randomly cre-
ated) population are evaluated according to a fitness functiond J for
their suitability to solve the problem. The fitness of each individ-
ual J(ξj) is crucial for its probability to reproduce and to create
offspring into a newly created population because fitter individuals
are selected with a greater probability for reproduction than less fit
ones. The selected parents undergo a series of genetic transforma-
tions (mutation, recombination) to produce offspring that consists of
a mixture of the parents genetic material. Under this selection pres-
sure, the individuals – also called chromosomes or strings – strive for
survival. After some reproduction cycles, the population converges
against a single solution ξ?, which is in the best case the globally
optimal solution for the given problem. EAs can be employed for
searching the NC’s optimal network function because a NC param-
eter set can be mapped onto a real-valued string that provides an
equivalent description of the network function. By searching for the fittest individual, the EA searches for
the optimal spacecraft trajectory. Figure 1 sketches the transformation of a chromosome into a trajectory.

E. Neurocontroller Input and Output

Two fundamental questions concerning the utilization of a NC for spacecraft steering are: (1) ”What input
should the NC get?” (or ”What should the NC know to steer the spacecraft?”) and (2) ”What output
should the NC give?” (or ”What should the NC do to steer the spacecraft?”). To be robust, a spacecraft
steering strategy should be time-independent: to determine the currently optimal spacecraft control u(t̄i),
the spacecraft steering strategy should have to know – at any time step t̄i – only the current spacecraft state
xSC(t̄i) and the current target state xT(t̄i), hence S : X = {(xSC,xT)} 7→ {u}. If a propulsion system other
than a solar sail is employed, the current propellant mass mP(t̄i) might be considered as an additional input,
S : X = {(xSC,xT,mP)} 7→ {u}. The number of potential input sets, however, is still large because xSC and
xT may be given in coordinates of any reference frame and in combinations of them. The difference xT−xSC

may be used as well, also in coordinates of any reference frame and in combinations of them. Two potential
input sets are depicted in figure 2.

Each output neuron gives a value Yi ∈ (0, 1). The number of potential output sets is also large because
there are many alternatives to define u, and to calculate u from Y. The following approach gave good results
for the majority of problems: the NC provides a three-dimensional output vector d′′ ∈ (0, 1)3 from which a
unit vector d in the desired thrust direction (called direction unit vector) is calculated via

d′ = 2d′′ −

1
1
1

 ∈ (−1, 1)3 and d = d′/|d′| (1)

For solar sailcraft, u = d, hence S : {(xSC,xT)} 7→ {d} (see figure 2(a)). For SEP spacecraft, the output
must include the engine throttle χ, so that u = (d, χ), hence S : {(xSC,xT,mP)} 7→ {d, χ} (see figure 2(b)).

dThis fitness function is also analogous to the cost function in optimal control theory. To emphasize this fact, it will be
denoted by the same symbol, J .
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(a) Example for a NC that implements a solar sailcraft steering
strategy

(b) Example for a NC that implements a SEP space-
craft steering strategy

Figure 2.

F. Evolutionary Neurocontroller Design

Figure 3. Low-thrust trajectory optimization using ENC

Figure 3 shows how an ENC may
be applied for low-thrust trajectory
optimization. To find the opti-
mal spacecraft trajectory, the ENC
method runs in two loops. Within
the (inner) trajectory integration
loop, a NC steers the spacecraft ac-
cording to its network function Nπππj

that is completely defined by the
NC’s parameter set πππj . The EA
in the (outer) NC optimization loop
holds a population of NC parameter
sets, Ξ = {πππ1, . . . ,πππq}, and examines
all of them for their suitability to gen-
erate an optimal trajectory. Within
the trajectory optimization loop, the
NC takes the current spacecraft state
xSC(t̄i∈{0,...,τ−1}) and that of the tar-
get xT(t̄i) as input, and maps them
onto some output. For SEP space-
craft, the input includes the current
propellant mass mP(t̄i) and the out-
put includes the current throttle χ(t̄i). The first three output values are interpreted as the components of
d′′(t̄i), from which the direction unit vector d(t̄i) is calculated via Eq. (1). Now, the spacecraft control u(t̄i)
is calculated from the NC output. Then, xSC(t̄i) and u(t̄i) are inserted into the equations of motion and
(numerically) integrated over one time step ∆t̄ = t̄i+1− t̄i to yield xSC(t̄i+1). The new state is fed back into
the NC. The trajectory integration loop stops when the accuracy of the trajectory is sufficient or when a
given time limit is reached. Then, back in the NC optimization loop, the NC’s trajectory is rated by the
fitness function J(πππj). The fitness of πππj is crucial for its probability to reproduce and to create offspring.
Under this selection pressure, the EA breeds more and more suitable steering strategies that generate better
and better trajectories. Finally, the EA converges against a single steering strategy, which gives in the best
case a near-globally optimal trajectory x?

SC[t].

G. Additionally Encoded Problem Parameters

If an EA is already employed for the optimization of the NC, it is manifest to use it also for the co-optimization
of additional problem parameters. This can be done without major additional effort. InTrance encodes the
following parameters additionally on the chromosome, making them an explicit part of the optimization
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problem: (1) the launch date, (2) the launch velocity vector (hyperbolic excess velocity vector), and (3) the
initial propellant mass (except for solar sailcraft).

H. Neurocontroller Fitness Assignment

The optimality of a trajectory might be defined with respect to various (primary) objectives (e.g., transfer
time or propellant consumption). When an ENC is used for trajectory optimization, the accuracy of the
trajectory with respect to the terminal constraints must also be considered as a secondary optimization
objective because it is not explicitly stated elsewhere and needs therefore not to be satisfied throughout the
search process. If, for example, the transfer time for a rendezvous is to be minimized, the fitness function
must include the transfer time T = t̄f − t̄0, the final distance to the target ∆rf = |rT(t̄f ) − rSC(t̄f )|, and
the final relative velocity to the target ∆vf = |ṙT(t̄f ) − ṙSC(t̄f )|, hence J(T,∆rf ,∆vf ). If, for example,
the propellant mass for a flyby problem is to be minimized, T and ∆vf are not relevant but the consumed
propellant ∆mP = mP(t̄0)−mP(t̄f ) must be included in the fitness function, hence J(∆mP,∆rf ). Because
the ENC unlikely generates a trajectory that satisfies the terminal constraints ∆rf = 0m and ∆vf = 0m/s
exactly, a maximal allowed distance ∆rf,max and a maximal allowed relative velocity ∆vf,max have to be
defined. Using ∆rf,max and ∆vf,max, the distance and relative velocity at the target can be normalized:

∆R =
∆r

∆rf,max
∆Rf =

∆rf

∆rf,max
(2)

∆V =
∆v

∆vf,max
∆Vf =

∆vf

∆vf,max
(3)

Furthermore, it is necessary to define a measure for the accuracy of the trajectory with respect to the terminal
constraints, e.g.:

∆X =

√
1
2

(∆R2 + ∆V 2) ∆Xf =

√
1
2

(
∆R2

f + ∆V 2
f

)
(4)

Because in the beginning of the search process most individuals do not achieve the required accuracy, a
maximal transfer time Tmax must be defined for the numerical integration of the trajectory. Now, sub-fitness
functions may be defined with respect to the primary and the secondary optimization objectives. It was
found that the performance of ENC depends strongly on an adequate choice of the sub-fitness functions and
on their composition to an (overall) fitness function. This is reasonable because the fitness function has not
only to decide autonomously which trajectories are good and which are not, but also which trajectories are
promising for future cultivation. The primary sub-fitness functions

JT = 1000 ·
(

1− T

Tmax

)
JmP =

mP(t̄0)
2mP(t̄0)−mP(t̄f )

− 1
3

(5)

and the secondary sub-fitness functions

Jr = log
(

1
∆Rf

)
Jv = log

(
1

∆Vf

)
(6)

were empirically found to produce good results. They have been used for all trajectory calculations within
this paper. Jr and Jv are positive, if the respective accuracy requirement is fulfilled and negative, if it
is not. Another empirical finding is that the search process should first concentrate on the accuracy of
the trajectory and then on the primary optimization objective. Therefore, the sub-fitness functions for the
primary optimization objectives are modified to

J ′
T =

0 if Jr < 0 ∨ Jv < 0

JT if Jr ≥ 0 ∧ Jv ≥ 0
J ′

mP
=

0 if Jr < 0 ∨ Jv < 0

JmP if Jr ≥ 0 ∧ Jv ≥ 0
(7)

To guide the search process, sub-fitness functions for other trajectory parameters (e.g., eccentricity or orienta-
tion of the orbital plane) might be introduced in the same way. They might be used as long as Jr < 0∨Jv < 0
and be discarded when Jr ≥ 0 ∧ Jv ≥ 0. This guidance of the search process, however, is at the expense of
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the simplicity of the fitness function. To minimize the transfer time for a rendezvous, two different fitness
functions might be conceived:

J1(T,∆rf ,∆vf ) = J ′
T +

1√
∆R2

f + ∆V 2
f

(8)

J2(T,∆rf ,∆vf ) = J ′
T +

1√
2 ·max(∆Rf ,∆Vf )2

(9)

Using J1, a poor final distance can be compensated with a good relative velocity and vice versa. This is not
possible for J2. It was found empirically that J1 is superior to J2 for most problems. For some problems,
however, J1 might run into a local optimum, where it yields very good final distances but fails to match the
final velocity. To minimize the propellant mass for a rendezvous, the fitness functions are similar, but J ′

T is
replaced with J ′

mP
:

J1(∆mP,∆rf ,∆vf ) = J ′
mP

+
1√

∆R2
f + ∆V 2

f

(10)

J2(∆mP,∆rf ,∆vf ) = J ′
mP

+
1√

2 ·max(∆Rf ,∆Vf )2
(11)

To minimize the transfer time for a flyby at the target, only the positions must match:

J(T,∆rf ) = J ′
T +

1
∆Rf

(12)

In the same way, to minimize the propellant mass for a flyby, J ′
T is replaced with J ′

mP
:

J(∆mP,∆rf ) = J ′
mP

+
1

∆Rf
(13)

IV. InTrance Implementation Specific Issues

The implementation of InTrance is largely based on approaches that have been proposed to avoid – or
at least to mitigate – the problems that are associated with standard genetic algorithms (GAs). InTrance
implements: (1) real-valued parameter encoding, (2) multi-objective tournament selection with steady-state
reproduction, (3) real delta coding, and (4) non-standard evolutionary operators.

A. Real-valued Parameter Encoding

Using a binary representation of the optimization parameters, GAs are often not able to provide high-
precision solutions. Experiments like those performed by Michalewicz indicate that the real-valued pa-
rameter representation is faster, more consistent from run to run, and provides a higher precision, especially
in large search spaces.12 It is also closer to the problem space, which facilitates the development of problem-
specific evolutionary operators.

B. Multi-Objective Tournament Selection and Steady-State Reproduction

The two most important issues in evolutionary search are selective pressure and population diversity, both
being strongly related: an increase in selective pressure decreases population diversity and vice versa. A
selective pressure that is too strong supports premature convergence to a local optimum, whereas a selective
pressure that is too weak makes the search ineffective. A computationally efficient selection method is
tournament selection, where a parent individual is selected by choosing randomly two individuals from the
population and allowing only the better one to reproduce. Using tournament selection, the selective pressure
remains constant throughout the search process because the reproduction probability of each individual is
independent of its absolute fitness.13 Another advantage of tournament selection is that each tournament
can be performed (randomly) with respect to a different optimization objective. Such a selection mechanism
prefers individuals that perform reasonably well with respect to all objectives, allowing multi-objective
optimization. (It is like a duel between two cowboy gunslingers. To survive a duel, one must draw fast and
aim accurately.)
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Figure 4. Steady-state reproduction with tournament selection

Another approach that has been
selected due to its computational ef-
ficiency is steady-state reproduc-
tion (also called one-at-a-time re-
production), where only one repro-
duction takes place at each time
step. It is computationally less ex-
pensive than the generational repro-
duction method used by standard
GAs.4 Steady-state reproduction in
combination with tournament selec-
tion is conceptually very simple (fig-
ure 4): two tournaments are per-
formed to determine the two parent chromosomes, which are the winners of the tournaments. They stay in
the population, while the two tournament losers are replaced by the two offspring chromosomes.

C. Real Delta Coding

Delta coding (DC) was proposed by Whitley et al. to enhance the precision and convergence behavior
of genetic search (for binary strings).14 It is based on the idea that a string can also express a distance δ
to some previous solution h, called interim solution or partial solution, which is the best known solution
so far. Using DC, each individual ξj consists of two parts, the partial solution and the δ-chromosome:
ξj = h + δj . At any time, only a dynamically selected subspace of the total search space is explored. This
subspace is constructed around the most recent partial solution. DC starts with the initial run of a GA. After
the population has converged, the best δ-chromosome is added to the old partial solution to form the new
partial solution. After that, a new population is created within an new (reduced or enlarged) search subspace
that is centered around the new partial solution. By periodically re-initializing the population, DC avoids
premature convergence. DC provides a mechanism that reduces or enlarges the size of the current search
subspace.14 The reduction mechanism allows the algorithm to focus the search on search subspaces that
appear promising, whereas the expansion mechanism allows the algorithm to explore previously overlooked
portions of the search space in later search. The author extended in Refs. 10 and 15 the idea of DC to
real-valued strings (floating point delta coding, FPDC). The algorithm that is used for InTrance is a revised
version of FPDC and should be termed real delta coding (RDC).

RDC runs in cycles, called epochs. Within each epoch ei, a dynamically selected subspace Hi of the total
(`-dimensional) search space H around the most recent partial solution h(ei) is explored. For the first epoch
e0, the search subspace

H0 = [−δmax(e0), δmax(e0)]` ⊆ H ⊂ R`

is constructed around the partial solution h(e0) = 0 and the population for the first time step t0 of epoch e0

is initialized at random, Ξt0(e0) = {δt0
1 (e0), . . . , δt0

q (e0)} (without loss of generality, it is assumed that the
individuals are always sorted according to their fitness). Then, the EA – as described above – runs until
the epochal convergence criterion is met. This convergence criterion depends on the relative improvement
within the last ν time steps: if at some time step t, the relative improvement within the last ν time steps,
J(ξt

1)−J(ξt−ν
1 ), is less than some small value ε, the population is converged and t =: tc (’c’ for convergence).

After convergence, ξtc
1 (e0), the best found solution in epoch e0, is taken as the partial solution h(e1) for

the next epoch. To guarantee the convergence of the algorithm, RDC uses no search subspace expansion
mechanism. The search subspace reduction mechanism is very simple: δmax(e1) = κ · δmax(e0), where
0 < κ < 1 is a user-defined parameter. Within the new search subspace

H1 = [h1(e1)− δmax(e1), h1(e1) + δmax(e1)]× . . .× [h`(e1)− δmax(e1), h`(e1) + δmax(e1)] ⊂ R`

Ξt0(e1) is again initialized at random, and so on. This is done until the RDC convergence criterion is met.
This convergence criterion is similar to the epochal convergence criterion: if, at some epoch ei, the relative
improvement to the last epoch, J(h(ei)) − J(h(ei−1)), is less than some small value ε, RDC is said to be
converged. For an ideal RDC performance, the search within each search subspace must be very extensive
(ν and κ large, ε small). In practice, however, a trade-off must be made between search effort and search
duration. To put the decision which values to take not on the user, a robust setting for ν and ε is hard-wired
in InTrance.
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D. Non-Standard Evolutionary Operators

Figure 5. InTrance evolutionary operators

Standard genetic operators that work on bi-
nary chromosomes can not be applied directly
to real-valued chromosomes. New genetic oper-
ators, which are tailored to work on real-valued
strings, have to be designed. Besides the ana-
logues to the one-point crossover operator and
the bit mutation operator that is used in stan-
dard GAs, many evolutionary operators have
been proposed so far. InTrance implements
three crossover operators (figure 5): (1) The
implemented one-point crossover operator16

works analogous to its binary pendant. (2) If
the uniform crossover operator17 is applied,
it is decided (randomly) for each locus in the
first offspring which parent contributes its pa-
rameter in that position. The second offspring
receives the parameter from the other parent.
Because uniform crossover exchanges single parameters and not string segments, it can combine features
regardless of their relative location on the string. (3) If the crossover nodes operator16 is applied, it is
decided (randomly) for each neuron in the first offspring which parent contributes its parameters for that
neuron. The second offspring receives the neuron parameters from the other parent. This prevents that the
logical subgroups of the string – the parameters of a single neuron – are torn apart.

All three crossover operators only exchange real numbers between the chromosomes but do not change
the numbers themselves. This can only be done by the mutation operator. Whitley pointed out that
no mutation operator is necessary for DC because the population is re-initialized at regular intervals.14

Preliminary InTrance tests, however, have revealed that this might be different for real-valued strings because
the absence of a mutation operator leads for small population sizes to premature convergence within the
epochs. Therefore, InTrance implements a computationally efficient mutation operator, which should be
termed fast uniform mutation: it is decided for the entire chromosome (with the mutation probability
0 ≤ pm ≤ 1), whether or not a single parameter on the chromosome is to be mutated. If the chromosome
is to be mutated, one locus is randomly selected. If, for example, the ith locus of chromosome δj is to be
mutated, its parameter δji is replaced with a new one δ′ji ∈ [−δmax,+δmax].

V. Results

To assess the performance of ENC for low-thrust trajectory optimization, InTrance was used to re-
calculate trajectories for problems for which trajectories have been found in the literature (henceforth called
reference problems/trajectories). Two of them are used within this paper to investigate the influence of
various factors (accuracy requirements, EA population size, NC topology) on the convergence behavior of
the method and the quality of the obtained solutions: a Mercury rendezvous using solar sail propulsion and
a near-Earth asteroid (NEA) rendezvous using solar sail and solar electric propulsion. The results for further
reference missions can be found in Ref. 4.

A. Mercury Rendezvous

Within this section, the convergence behavior of ENC and the quality of the obtained solutions is assessed
for an exemplary rendezvous mission to Mercury. For an ideal solar sail with a characteristic acceleratione

of 0.55 mm/s2 a (locally) optimal trajectory was calculated in Refs. 18-19 using a LTOM. This reference
trajectory launches from Earth on 15 Jan 03 and takes 665 days to rendezvous Mercury, if the solar sailcraft
is inserted directly into an interplanetary trajectory with zero hyperbolic excess energy (C3 = 0km2/s2).

emaximum acceleration of a solar sailcraft at Earth distance from the sun
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1. Convergence Behavior

To evaluate its convergence behavior, InTrance was run five times – using five different initial NC populations
– for the launch date of the reference trajectory (reference launch date). A 12–30–3 neurocontroller (12 input
neurons, 1 hidden layer with 30 hidden neurons, 3 output neurons) was used, where the input neurons receive
the current solar sailcraft state xSC and the current target state xT in cartesian coordinates, and the output
neurons define the direction unit vector d. On the basis of preliminary InTrance-runs, which indicated that
the optimal transfer takes less than 600 days, the maximum transfer time was set to Tmax = 600 days. For
discretization, this time interval was divided into τ = 600 finite elements of equal length, so that the NC was
allowed to change the sail attitude once every day. The final accuracy limit was set to ∆rf,max = 100 000 km
and ∆vf,max = 100 m/s.f The population size was set to q = 50. Figure 6(a) shows the resulting trajectories
for the five InTrance-runs.

(a) Trajectories for five different initial populations (b) Best InTrance-trajectory

Figure 6. Mercury rendezvous trajectories (reference launch date)

The best trajectory (figure 6(b)) is 91 days (∆T% = 16%)g faster than the reference trajectory, revealing
that the latter is far from the global optimum. The final distance is ∆rf ≈ 57 000 km and the final relative
velocity to Mercury is ∆vf ≈ 57 m/s, both being well better than the required accuracy limits. The small
variance of the five solutions gives evidence for a good convergence behavior of ENC.

2. Different Population Sizes and Accuracy Requirements

To assess the influence of the population size and the required accuracy (∆rf,max and ∆vf,max) on the results,
InTrance was run for three different population sizes (q = 25; 50; 100) and two final accuracy limits (FAL1:
∆rf,max = 1 000 000 km, ∆vf,max = 500 m/s; FAL2: ∆rf,max = 100 000 km, ∆vf,max = 100 m/s), using the
same 12–30–3 NC. The results are shown in table 1 and 2. Table 3 shows the average runtime for the calcula-
tions.

Table 1. Transfer times to Mercury for different population sizes (FAL1, five different initial populations)

Population size Transfer time T [days] Average Std. dev.
run 1 run 2 run 3 run 4 run 5

25 566 573 577 570 572 571.6 4.04
50 569 568 573 571 568 569.8 2.17
100 570 564 564 567 569 566.8 2.77

f∆vf,max = 100m/s was also used in Refs. 18-19, whereas ∆rf,max is not given there.
g∆T% = (TInTrance − TR)/ min(TR, TInTrance) · 100%, where TR is the transfer time of the reference trajectory.
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Table 2. Transfer times to Mercury for different population sizes (FAL2, five different initial populations)

Population size Transfer time T [days] Average Std. dev.
run 1 run 2 run 3 run 4 run 5

25 585 592 580 579 588 584.8 5.45
50 574 578 589 579 589 581.8 6.83
100 584 590 576 583 585 583.6 5.03

Table 3. Average runtime on a personal
computer with a 1.3GHz processor

Accuracy Average runtime [hours]
limit q = 25 q = 50 q = 100
FAL1 3.0 5.8 7.9
FAL2 5.0 6.8 11.6

For the less demanding FAL1, the trajectories are faster and
the standard deviation of the transfer time is lower. Unlike it
may be expected, the quality of the solutions does not depend
considerably on the population size. Table 3 shows, however,
that the search duration depends substantially on the popula-
tion size and on the required accuracy. The dependency on the
population size is straightforward. A larger population takes
longer to converge against a point in the search space where
no further improvement is probable. Therefore, the population
size had been introduced into the RDC epochal convergence
criterion, so that the EA is allowed to search longer when the population size is large. The dependency of
the search duration on the final accuracy limit might be attributed to the employed fitness function, which
allots little value to further improvements in ∆rf and ∆vf if the required accuracy is already achieved
(∆Xf ≤ 1). Consequently, a more demanding accuracy requirement leaves more room for improvements,
hence delaying the convergence of RDC. For the following calculations, q = 50 and FAL2 has been used, if
it is not stated otherwise.

3. Different Neurocontrollers

For the calculations above, a 12–30–3 neurocontroller had been used, where the input neurons receive the
current solar sailcraft state and the current target state in cartesian coordinates. Because this NC is only
one of many possible NCs that may be used for this trajectory optimization problem, different input sets
and different numbers of hidden neurons/layers have been tested. (Investigations and results for different
NC output sets have been reported before.20) Table 4 shows the different NC input sets that have been
considered.

Table 4. Tested NC input sets

Notation NC input set X
(c) 12–�–3 xSC and xT in cartesian coordinates
(c) 6–�–3 xT − xSC in cartesian coordinates
(p) 12–�–3 xSC and xT in polar coordinates
(e) 6–�–3 xT − xSC as orbital element differences (aT − aSC, etc.)
(cp) 24–�–3 xSC and xT in cartesian and polar coordinates
(cp) 12–�–3 xT − xSC in cartesian and polar coordinates
(ce) 12–�–3 xT − xSC in cartesian coordinates and as orbital element differences
(pe) 12–�–3 xT − xSC in polar coordinates and as orbital element differences
(cpe) 36–�–3 xSC and xT in cartesian and polar coordinates and as orbital elements
(cpe) 18–�–3 xT − xSC in cartesian and polar coordinates and as orbital element

differences
(� = wildcard for the neurons in the hidden layer(s))

Table 5 shows the results for the NCs that achieved the required final accuracy limit (FAL2) in all of five
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Table 5. Transfer times to Mercury for different steering strategy sets and different NC topologies (FAL2,
reference launch date, five different initial populations)

NC topology Transfer time T [days] Average Std. dev.
run 1 run 2 run 3 run 4 run 5

(c) 12–10–3 592 582 587 593 577 586.2 6.76
(c) 12–20–3 579 583 579 577 580 579.6 2.19
(c) 12–30–3 574 578 589 579 589 581.8 6.83
(c) 12–40–3 583 579 575 578 578 578.6 2.88

(c) 12–15–15–3 577 578 577 581 592 581.0 6.36
(cp) 24–20–3 580 584 575 573 591 580.6 7.23
(cp) 24–30–3 579 576 573 578 575 576.2 2.39
(cp) 24–40–3 591 575 580 581 586 582.6 6.11

(cp) 24–15–15–3 575 579 578 580 583 579.0 2.92
(c) 6–30–3 591 592 583 579 581 585.2 5.93

(cpe) 36–30–3 583 589 579 584 579 582.8 4.15
(cpe) 18–30–3 581 591 585 577 587 584.2 5.40

InTrance-runs. On average, the best results (best solution, best average, low standard deviation) have been
obtained using the (cp) 24–30–3 neurocontroller. Note that only the NCs with cartesian inputs achieved the
required accuracy in all cases, although the motion of spacecraft in interplanetary space is better described in
polar coordinates or by orbital elements. This might be due to the fact that the variation of the states is larger
in cartesian coordinates than in polar coordinates or in orbital elements, thus providing a more substantial
input to the NC. The number of hidden neurons has – at least for this trajectory optimization problem –
little effect on the results. Even NCs with a very small number of hidden neurons provide acceptable results
for this problem.

4. Optimization of the Launch Date

To find the optimal launch date for the Mercury rendezvous, InTrance was used to determine the shortest
orbit transfer. Because no rendezvous with the target body but only with the target orbit is required in
this case, the launch interval was set to 1 year, the orbital period of Earthh. After five InTrance runs,
the shortest found orbit transfer takes T = 510 days to reach the orbit of Mercury. For this orbit transfer,
the solar sailcraft’s angular position at launch is ϕSC(t̄0)

.= −2.90 and at arrival ϕSC(t̄0 + T ) .= −0.83. By
scanning the planetary positions, it can be found that within a 1 year-interval around the reference launch
date, the constellation of Earth and Mercury is most similar to that of the optimal orbit transfer solution
for a launch on 27 Mar 03 (where ϕEarth(27 Mar 03) .= −3.02 and ϕMercury(27 Mar 03 + 510 days) .= −0.83).
InTrance was run five times for the launch date that was expected to be optimal (27Mar 03). However, to
allow the steering strategy to compensate for the small difference in Earth’s angular position at launch, the
launch date was not prescribed exactly, but InTrance was allowed to choose the launch date from the interval
[26Mar 03 00:00, 31 Mar 03 00:00]. The maximum transfer time was set to Tmax = 600 days (with τ = 600).

Figure 7(a) shows that all five InTrance-trajectories differ only little. This small variance of the solutions
gives evidence for a good convergence behavior of ENC. Taking 502 days to rendezvous Mercury, the best
InTrance-trajectory (figure 7(b)) is now 163 days (32%) faster than the reference trajectory. The final
distance to Mercury is ∆rf ≈ 20 000 km and the final relative velocity to Mercury is ∆vf ≈ 20 m/s, both
being well better than the required values (FAL2). The optimal launch date was found to be 31 Mar 03, 75
days later than the reference launch date. Note that the optimal transfer time to rendezvous Mercury is
even better than the previously found optimal orbit transfer time of 510 days, which is obviously not optimal
ex post. This might be attributed to the larger launch interval (1 year instead of 5 days), which makes the
search more difficult for the EA because different launch dates within a 1 year interval require significantly
different steering strategies, whereas the good steering strategies within a 5 day interval are more similar.

hThe orbital period of the target body is not relevant for the orbit transfer problem.

12 of 16

American Institute of Aeronautics and Astronautics



(a) Trajectories for five different initial populations (b) Best InTrance-trajectory

Figure 7. Mercury rendezvous trajectories (optimized launch date)

B. Near-Earth Asteroid Rendezvous

Figure 8. Best InTrance-trajectory for the
1996FG3 rendezvous (reference launch date)

Within this section, the convergence behavior of ENC and
the quality of the obtained solutions is further assessed for
an exemplary rendezvous mission to a near-Earth aster-
oid (1996FG3). For solar sailcraft with a characteristic
acceleration of 0.14 mm/s2 (ideally reflecting 50 m× 50 m
solar sail, launch mass 148 kg, useful massi 75 kg) a (lo-
cally) optimal trajectory was calculated in Refs. 21-22
using a LTOM. This reference trajectory launches from
Earth on 13 Aug 06 and takes 1640 days to rendezvous
1996FG3, if the solar sailcraft is inserted directly into an
interplanetary trajectory with an hyperbolic excess en-
ergy of C3 = 4 km2/s2.

In the first experiment, InTrance was run five times
for the reference launch date but with zero hyperbolic
excess energy. The accuracy limit for the distance and
the relative velocity at the target was set to ∆rf,max =
300 000 km and ∆vf,max = 100m/s, respectively, which is
compatible with the reference trajectory. The best found
InTrance-trajectory (figure 8) is 135 days faster (9.0%)
than the reference trajectory, while reducing at the same
time the C3-requirement from 4 km2/s2 to 0 km2/s2, thus
permitting a reduction of the launcher requirements and eventually of launch costs. The final distance to
1996FG3 is ∆rf ≈ 200 000 km and the final relative velocity is ∆vf ≈ 65 m/s, both being better than the
required values.

In the second experiment, InTrance was used to find the optimal launch date for the 1996FG3 rendezvous
problem (with C3 = 0 km2/s2). Figure 9(a) shows the solutions for five runs with different initial NC
populations. The small variance of the five solutions gives evidence for a good convergence behavior of ENC.
Taking 1435 days to rendezvous 1996FG3, the trajectory is now 205 days (14%) faster than the reference
trajectory. The final distance to 1996FG3 is ∆rf ≈ 267 000 km and the final relative velocity is ∆vf ≈ 89 m/s,
both being better than the required values. The optimal launch date was found to be 22 Oct 05, 295 days
earlier than the reference launch date.

ispacecraft bus plus scientific payload
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(a) Trajectories for five different initial populations (b) Best InTrance-trajectory

Figure 9. 1996FG3 rendezvous (optimized launch date)

Figure 10. 1996FG3 rendezvous (optimized launch
date): Best InTrance-trajectory for C3 = 4km2/s2

The third experiment was to find out whether a given
C3 of 4 km2/s2 could be spent more efficiently than done
by the reference trajectory. The optimal launch date for
this problem was found to be 12 Feb 06, a half year earlier
than the reference launch date. Figure 10 shows the best
found trajectory. It takes only 944 days to rendezvous
1996FG3, being 696 days (74%) faster than the reference
trajectory.

To assess the trajectory optimization capability of
ENC also for low-thrust propulsion systems other than
solar sails, and to assess the capability of near-term so-
lar sail propulsion for this NEA rendezvous mission, In-
Trance was used to calculate trajectories for spacecraft
with an already existing SEP system, NASA’s NSTAR ion
thruster, which was flown on the Deep Space 1 mission.
The mission objective was as for the solar sail: deliver a
useful mass of 75 kg to 1996FG3. In contrast to solar sail-
craft trajectory optimization, SEP spacecraft trajectories
may not only be optimized with respect to transfer time
but also with respect to the required propellant mass, and
usually a trade-off between both optimization objectives has to be made, so that an optimal solution is only
one of many (Pareto-)optimal solutions. Figure 11 exemplifies two InTrance-solutions for this problem.
Using an NSTAR thruster, the same useful mass of 75 kg could be delivered to 1996FG3 within 294 days
(with a propellant mass of 46.8 kg) or even within 270 days, if slightly more propellant (51.0 kg) is consumed.
The results demonstrate that, at least for this mission, a near-term solar sail is outperformed by the SEP
option, if only the transfer time is considered. This is not surprising because the required ∆V for the transfer
is moderate. The launch mass of the SEP option, however, is larger (229.9 kg and 234.5 kg, respectively)
than for the solar sail option (148.0 kg), requiring eventually a heavier and more expensive launch vehicle. If
ground operation costs can be kept low (e.g., due to a high on-board autonomy during transfer), and if the
transfer time plays a subordinate role with respect to cost, the solar sail might be the favorable option for
such a mission. In any case, on the way to more advanced solar sails, as they are required for high-∆V mis-
sions, the development of near-term solar sails is an indispensable first stepping stone, even if their current
performance is not superior to that of state-of-the-art electric propulsion systems.

14 of 16

American Institute of Aeronautics and Astronautics



(a) mP = 46.8 kg (b) mP = 51.0 kg

Figure 11. Trajectory options for a 1996FG3 rendezvous with SEP spacecraft

VI. Summary and Conclusions

Within this paper, low-thrust trajectory optimization was attacked from the perspective of machine learn-
ing. Inspired by natural archetypes, a novel method for spacecraft trajectory optimization was proposed that
fuses artificial neural networks and evolutionary algorithms into evolutionary neurocontrollers. This method
was termed InTrance, which stands for Intelligent Trajectory optimization using neurocontroller evolution.
From the perspective of machine learning, a trajectory is regarded as the result of a spacecraft steering
strategy that manipulates the spacecraft’s thrust vector according to the current state of the spacecraft and
the target. An artificial neural network is used as a so-called neurocontroller to implement such a spacecraft
steering strategy. This way, the trajectory is defined by the internal parameters of the neurocontroller. An
evolutionary algorithm is used to find the optimal network parameters. The trajectory optimization problem
is solved if the parameter set that generates the optimal trajectory is found. Using an evolutionary algorithm
for the optimization of the neurocontroller parameters, this algorithm may be also used to find the optimal
initial conditions for the mission.

Within this paper, InTrance was applied to two interplanetary low-thrust trajectory optimization prob-
lems, a Mercury rendezvous and a near-Earth asteroid rendezvous. For both missions, reference trajectories
had been found in the literature. The re-calculation of the reference problems revealed that those trajecto-
ries, which have been generated using a local trajectory optimization method, are quite far from the global
optimum. Using InTrance, the transfer times could be reduced considerably. Because evolutionary neurocon-
trollers explore the trajectory search space more exhaustively than a human expert can do by using traditional
optimal control methods, they are able to find spacecraft steering strategies that generate better trajectories,
which are closer to the global optimum. For mission feasibility analysis, the obtained InTrance-trajectories
are sufficiently accurate with respect to the terminal constraints. If a more accurate solution is required, the
InTrance-solution might be used as an initial guess for some local trajectory optimization method. Unlike
the traditional methods, InTrance runs without an initial guess and does not require the attendance of an
expert in astrodynamics and optimal control theory. Being problem-independent, the application field of
evolutionary neurocontrol may be extended to a variety of other optimal control problems.
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