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Although the solar radiation pressure decreases with the square of solar distance, so-
lar sails enable missions to the outer solar system and even beyond. For such missions,
the solar sail may gain a large amount of energy by first making one or more close ap-
proaches to the sun. Within this paper, optimal trajectories for solar sail missions to the
outer planets and into near interstellar space (200AU) are presented, both for ideal and
for non-ideal sails. Thereby, also near/medium-term solar sails with a relatively moderate
performance are considered. The minimal flight time to the outer solar system depends not
only on the lightness of the solar sail, but also on the allowed minimal solar distance. The
solar distance, however, is limited by the temperature limit of the sail film. Within this
paper, it is demonstrated that faster trajectories can be obtained for a given sail tempera-
ture limit, if not – as usual – the allowed minimal solar distance but the allowed maximal
sail temperature is directly used as an optimization constraint. Although, especially for
moderate-performance solar sails, the topology of optimal trajectories becomes quite so-
phisticated, the required flight times and and the achieved solar system escape velocities
obey very simple laws.

I. Introduction

Utilizing solely the freely available solar radiation pressure for propulsion, solar sails enable a wide range
of high-∆V missions, many of which are difficult or even impossible to accomplish with any other type of
conventional propulsion system. Solar sails enable even missions to the outer solar system and beyond,
despite the fact that the solar radiation pressure decreases with the square of the sun–sail distance. For such
missions, the solar sail may gain a large amount of energy by first making one or more close approaches to
the sun, thereby performing a so-called single or multiple ’solar photonic assist’ (SPA) maneuver, turning
the trajectory into a hyperbolic one.1–3 Within this paper, optimal trajectories for solar sail missions to
the outer planets and into near interstellar space (200 AU) are presented, both for ideal and for non-ideal
sails. It will be shown that – even for near/medium-term solar sails with relatively moderate performance
– such SPA trajectories allow reasonable transfer times, without the need to perform any gravity assist
maneuver. Nevertheless, without the use of additional propulsive devices and/or an aerocapture maneuver
at the target, only fast flybys can be accomplished due to the associated large hyperbolic excess velocities.
The minimal flight time to an outer solar system target depends not only on the lightness of the solar sail,
but also on the allowed minimal solar distance: the smaller the minimal solar distance, the larger the amount
of energy that can be gained during a solar approach. The minimal solar distance, however, is limited by
the temperature limit of the sail film. In previous papers by Sauer1 and Leipold,2,3 the allowed minimal
solar distance was used as a path constraint for trajectory optimization of ideal sails, with the argument
that such a constraint enforces that some sail temperature limit will not be exceeded during the closest solar
approach. The sail temperature, however, depends not only on the solar distance but also on the sail attitude.
Within this paper, it is demonstrated that faster trajectories can be obtained for a given sail temperature
limit, if not the allowed minimal solar distance but the allowed maximal sail temperature is directly used
as a path constraint for optimization. For the calculation of near-globally optimal trajectories, evolutionary
neurocontrol is used, a method that is based on artificial neural networks and evolutionary algorithms.4–6
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II. Solar Sail Force Models

For describing the solar radiation pressure (SRP) force exerted on a solar sail, it is convenient to introduce
two unit vectors. The first one is the sail normal vector n, which is perpendicular to the sail surface and
always directed away from the sun. Its direction, which describes the sail attitude, is expressed by the sail
clock angle α and the sail cone angle β (figure 1(a)). The second unit vector is the thrust unit vector f ,
which points always along the direction of the SRP force. Its direction is described likewise by the thrust
clock angle γ and the thrust cone angle δ (figure 1(b)).

(a) (b)

Figure 1. Definition of the sail normal vector (a) and the thrust unit vector (b)
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where S0 = 1368 W/m2 is the solar constant, c is the speed of light in vacuum, and r0 = 1AU. For the
optical characteristics of a solar sail, different assumptions can be made, which result in different models for
the magnitude and direction of the SRP force acting on the sail. The most simple model assumes an ideally
reflecting sail surface. The SRP force on an ideal sail of area A is

FSRP = 2PA cos2 β n (2)

Thus, the SRP force it is always along the direction of the sail normal vector, f = n.
Another SRP force model that is widely encountered uses an overall sail efficiency factor η ≤ 1 with the

intention of describing the non-ideal reflectivity of the sail. Using this factor, the SRP force acting on the
sail is

FSRP = 2ηPA cos2 β n (3)

Also for this model, the SRP force is always along the direction of the sail normal vector, f = n. Therefore,
this model also describes a specularly reflecting sail surface, where the angle of incidence is equal to the
angle of reflection. From the perspective of trajectory analysis, this models is equivalent to the ideal sail
model because a decrease of η can always be offset with an inversely proportional increase of A. Therefore,
this model is not further considered here.

Because the surface of a real solar sail is not a specular reflector, a thorough trajectory simulation must
consider the optical characteristics of the real sail film, as they can be parameterized by the absorption
coefficient α, the reflection coefficient ρ, the transmission coefficient τ , and the emission coefficient ε, with
the constraint α + ρ + τ = 1. The reflection coefficient can be further divided into a coefficient for specular
reflection ρs, a coefficient for diffuse reflection ρd, and a coefficient for back reflection ρb, with the constraint
ρs +ρd +ρb = ρ. The non-ideal solar sail force model used within this paper considers the optical parameters
P = {α, ρs, ρd, ρb, τ, εf , εb} of a sail film that is aluminum-coated on the front side (emissivity εf = 0.05)
and chromium-coated on the back side (emissivity εb = 0.55) to keep the sail temperature within moderate
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limitsa. Using the non-ideal solar sail force model, the SRP force has a component

F⊥ = 2PAq⊥(β,P) (4)

perpendicular to the sail surface and a component

F‖ = 2PAq‖(β,P) (5)

parallel to the sail surface. Using the optical parameters for an Al|Cr-coated sail,7 one gets

q⊥(β,PAl|Cr) = 0.9136 cos2 β − 0.005444 cos β (6)
q‖(β,PAl|Cr) = 0.0864 sinβ cos β (7)

The SRP force may be written as
FSRP =

√
F 2
⊥ + F 2

‖ f (8)

and by defining
Q2(β,P) =

√
q2
⊥(β,P) + q2

‖(β,P) (9)

as
FSRP = 2PAQ2(β,P) f (10)

Thus, the SRP force is not along the direction of the sail normal vector (except for β = 0). The angle
between n and f is

ε = arctan(q‖/q⊥) (11)

The following performance parameters are commonly used to describe the lightness of solar sails: The sail
assembly loading is defined as the mass of the sail assembly (the sail film and the required structure for
storing, deploying and tensioning the sail, index ’SA’) per unit area:

σSA =
mSA

A
(12)

The sail assembly loading is the key parameter for the efficiency of the solar sail’s structural design. The
sailcraft loading, the key parameter for the lightness of the entire solar sailcraft, is defined as the specific
mass of the sailcraft including the payload (index ’PL’), where the term payload stands for the total sailcraft
except the solar sail assembly (i.e., except the propulsion system):

σ =
m

A
=

mSA + mPL

A
= σSA +

mPL

A
(13)

The characteristic acceleration is an equivalent parameter for expressing the lightness of the entire solar
sailcraft. It is defined as the SRP acceleration acting on a solar sail that is oriented perpendicular to the
sun-line at 1AU:

ac =
2S0/c ·A · q⊥(0,P)

m
=

Peff,0(P) ·A
m

=
Peff,0(P)

σSA + mPL
A

(14)

For an Al|Cr-coated sail, Peff,0(PAl|Cr) = 2S0/c · q⊥(0,PAl|Cr) = 8.288 µN/m2.

III. Solar Sail Orbital Dynamics

The orbital dynamics of solar sails is in many respects similar to the orbital dynamics of other low-thrust
spacecraft. Other low-thrust spacecraft, however, may orient its thrust vector into any desired direction,
whereas the thrust vector of a solar sail is constrained to lie on the surface of a bubble that is always directed
away from the sun (figure 2). Nevertheless, by controlling the sail orientation relative to the sun, a solar
sail can gain orbital angular momentum and spiral outwards – away from the sun – or lose orbital angular
momentum and spiral inwards – towards the sun. For SPA trajectories, the minimal flight time depends not
only on the lightness of the solar sail but also on minimal solar distance along the trajectory (see figure 4).

aas it will become clear later from Eq. (15)
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Figure 2. Spiralling towards and away from the sun

The smaller the minimal solar distance, the larger the amount of energy that can be gained during a SPA.
The sail’s equilibrium temperature at a distance r from the sun is8
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r1/2
(15)

where σ is the Stefan-Boltzmann constant. Therefore, the minimal distance to the sun is – for a given sail
attitude – limited by the temperature limit of the sail film. Trajectory optimization for SPA trajectories is
exceedingly difficult because one must not only beware of flying too close to the sun but one must also take
care that the trajectory becomes not hyperbolic too early, so that no additional energy can be gained. At the
same time, one must find the optimal trade-off between the time that is spent within the inner solar system
– to gain energy – and the time that is required to fly outwards after the trajectory became hyperbolic.

IV. Evolutionary Neurocontrol: A Smart Global Optimization Method for
Solar Sail Trajectories�

�
�
�
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=
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�
�

�
�
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=
sail steering strategy S

�� ��sail normal vector history n[t]

�� ��solar sail trajectory x[t]

?

?

?

Figure 3. Transformation of a chromo-
some into a solar sail trajectory

Within this paper, evolutionary neurocontrol (ENC) is used for
the calculation of near-globally optimal trajectories. This method
is based on artificial neural networks (ANNs) and evolutionary algo-
rithms (EAs). ENC attacks trajectory optimization problems from
the perspective of artificial intelligence and machine learning. Here,
it can only be sketched how this method is used to search optimal
solar sail trajectories. The reader who is interested in the details
of the method is referred to Refs. 4-6. The problem of searching
an optimal solar sail trajectory x?[t] = (r?[t], ṙ?[t]), where ’[t]’ de-
notes the time history of the preceding variable, is equivalent to the
problem of searching an optimal sail normal vector history n?[t], as
it is defined by the optimal time history of the so-called direction
unit vector d?[t], a unit vector that points along the optimal thrust
direction. Within the context of machine learning, a trajectory is
regarded as the result of a sail steering strategy S that maps the
problem relevant variables (the solar sail state x and the target state
xT) onto the direction unit vector, S : {x,xT} ⊂ R12 7→ {d} ⊂ R3,
from which n is calculated. This way, the problem of searching
x?[t] is equivalent to the problem of searching (or learning) the op-
timal sail steering strategy S?. An ANN may be used as a so-called
neurocontroller (NC) to implement solar sail steering strategies. It can be regarded as a parameterized func-
tion Nπππ (the network function) that is – for a given network topology – completely defined by the internal
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parameter set πππ of the ANN. Therefore, each πππ defines a sail steering strategy Sπππ. The problem of searching
x?[t] is therefore equivalent to the problem of searching the optimal NC parameter set πππ?. EAs that work
on a population of strings can be used for finding πππ? because πππ can be mapped onto a string ξ (also called
chromosome or individual). The trajectory optimization problem is solved when the optimal chromosome
ξ? is found. Figure 3 sketches the subsequent transformation of a chromosome into a solar sail trajectory.
An evolutionary neurocontroller (ENC) is a NC that employs an EA for learning (or breeding) the optimal
sail steering strategy. ENC was implemented by the author within a low-thrust trajectory optimization pro-
gram called InTrance, which stands for Intelligent Trajectory optimization using neurocontroller evolution.
InTrance is a smart global trajectory optimization method that requires only the target body/state and in-
tervals for the initial conditions as input to find a near-globally optimal trajectory for the specified problem.
It works without an initial guess and does not require the attendance of a trajectory optimization expert.

V. Results

All trajectories calculated within this paper assume direct interplanetary insertion of the solar sail with
zero hyperbolic excess energy (C3 = 0 km2/s2). To find the absolute flight time minima – independent of
the actual constellation of Earth and the respective target – no flyby at the target itself but only a crossing
of its orbit within a distance of less than 106 km was required, and InTrance was allowed to vary the launch
date within a one year interval. Therefore, the resulting flight times represent lower bounds that are strictly
valid only for the optimal constellation of Earth and the respective target. Specific suboptimal launch
dates/constellations might yield much longer flight times.

Besides the gravitational forces of all celestial bodies and the SRP force, many disturbing forces – as
caused, e.g., by the solar wind and the aberration of solar radiation (Poynting–Robertson effect) – are
influencing the motion of solar sails. Ideally, all these forces have to be considered for a thorough mission
analysis. For mission feasibility analysis, however, as it is done within this paper, the following simplifications
are valid: (1) the solar sail is moving under the sole influence of solar gravitation and radiation, (2) the sun
is a point mass and a point light source, (3) the solar sail attitude can be changed instantaneously, and (4)
the optical characteristics of the sail film do not degrade over time.

Later in this paper, it will become necessary to distinguish trajectories, for which the allowed minimal
solar distance was limited, from trajectories, for which the allowed maximal sail film temperature was limited.
Therefore, let rlim denote the allowed minimal solar distance (distance limit) and rmin the minimal solar
distance along the trajectory, and let Tlim denote the allowed maximal sail film temperature (sail temperature
limit) and Tmax the maximal sail film temperature along the trajectory. Using this notation, Tmax =
Tmax(rlim) (for distance-limited trajectories) and rmin = rmin(Tlim) (for temperature-limited trajectories).

Before calculating minimal flight times T and solar system escape velocitiesb vesc for missions to all outer
planets and into near interstellar space (200AU), a Neptune flyby mission will be used to assess the general
features of SPA trajectories, to compare different solar sail force models (ideal vs. non-ideal solar sails), and
to compare different optimization constraints (limitation of allowed minimal solar distance vs. limitation
of allowed maximal sail temperature). Finally, by calculating optimal temperature-limited trajectories for
non-ideal solar sails, it will be investigated how the minimal flight time, the solar system escape velocity, and
the topology of the trajectory (e.g., the number of SPAs) vary for a wide range of characteristic accelerations
and sail temperature limits.

A. Dependency of Minimal Flight Time on Lightness and Minimal Solar Distance for Ideal
Solar Sails

For a Neptune flyby, InTrance was used to calculate minimal flight times for ideal solar sails with different
characteristic accelerations (0.5 mm/s2 ≤ ac ≤ 2.0 mm/s2) and different solar distance limits (0.1 AU ≤
rlim ≤ 0.5 AU). Figure 4 shows the results. As expected, the trajectories are faster for lighter solar sails and
for sails that are allowed to make closer approaches to the sun. Interestingly, figure 4 shows that T (rlim)
obeys approximately a linear law for all three values of ac,

T (ac, rlim) ≈ c1(ac)rlim + c2(ac).

bvesc =
√

(v2
f − 2µ/rf ), where vf is the final velocity, rf is the final solar distance, and µ is the sun’s gravitational constant
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Figure 4. Minimal flight time over characteristic acceleration for different distance-limits rlim (ideal sail)

Figure 5. Comparison of minimal flight times for ideal and non-ideal solar sails (ac = 1.0mm/s2)

Figure 6 shows optimal Neptune flyby trajectories for four different characteristic accelerations, the allowed
minimal solar distance being limited to rlim = 0.1 AU in all four cases. One can see that more and more
SPAs are required as the characteristic acceleration of the sail decreases. The optimal trajectory for the
lightest solar sail (ac = 2.0 mm/s2) makes only a single SPA, whereas the optimal trajectory for the heaviest
solar sail (ac = 0.5 mm/s2) requires four SPAs to reach Neptune in minimal time. The heavier the solar sail
is, the larger is also the fraction of flight time that must be spent in the inner solar system for gaining orbital
energy (30.1% of total flight time for ac = 2.0 mm/s2, 33.5% for ac = 1.0 mm/s2, 39.9% for ac = 0.75 mm/s2,
and 44.5% for ac = 0.5 mm/s2).

B. Ideal vs. Non-Ideal Solar Sails

In the previous section, minimal flight times have been presented for ideal solar sails because, to the authors
knowledge, all previous solar sail trajectory analyses for solar system escape missions assume ideal reflectivity
of the sail. A real solar sail, however, is not an ideal reflector and a thorough trajectory analysis must take
into account the optical characteristics of the real sail film.9 In Figure 5, flight times are compared for an
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(a) ac = 2.0mm/s2, one solar photonic assist (b) ac = 1.0mm/s2, two solar photonic assists

(c) ac = 0.75 mm/s2, three solar photonic assists (d) ac = 0.5mm/s2, four solar photonic assists

Figure 6. Topology of optimal Neptune flyby trajectories for different characteristic accelerations (ideal sail,
rlim = 0.1AU)

ideal and a non-ideal solar sail with ac = 1.0 mm/s2. Figure 5 shows that the flight times are about 5%
longer, if the non-ideal reflectivity of the sail is taken into account.

C. Distance-Limited vs. Temperature-Limited Trajectories

In previous papers by Sauer1 and Leipold,2,3 rlim was used as a path constraint for the trajectory opti-
mization of ideal solar sails, with the argument that such a constraint enforces that some Tlim will not be
exceeded during the closest solar approach.c According to Eq. (15), however, the temperature at a given
solar distance r depends also on the light incidence angle β. It might therefore yield faster trajectories for a
given Tlim, if not rlim but Tlim is directly used as a path constraint. This can be realized by constraining the
sail attitude so that the light incidence angle can not become smaller than the critical one, β > βlim(r, Tlim),
where Tlim would be exceeded. Figure 7 shows two exemplary trajectories, one distance-limited (figure 7(a))
and one temperature-limited (figure 7(b)). By keeping β large enough during the closest approach, the
temperature-limited trajectory approaches the sun closer while maintaining the sail temperature below the

calthough – strictly – the temperature of an ideal sail is always 0 K according to equation (15)
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(a) Distance-limited trajectory (b) Temperature-limited trajectory

Figure 7. Optimal Neptune flyby trajectories for different optimization constraints (ac = 1.0mm/s2)

Figure 8. Flight time over maximum sail temperature for distance-limited and temperature-limited optimal
trajectories

temperature that is given by the distance-limited trajectory (so that Tmax is the same for both trajectories).
The resulting trajectory is faster than the distance-limited one. Figure 8 shows that for a given Tlim, op-
timal temperature-limited trajectories are on average about 5% faster than optimal distance-limited ones.
Interestingly, figure 8 shows that T and Tmax are nearly inversely proportional for both curves,

T (Tmax) ≈ c3/Tmax.

D. Minimal Flight Times to the Outer Planets and Near Interstellar Space

Figure 9 shows the minimal flight times T and the achieved hyperbolic escape velocities vesc for optimal
temperature-limited flyby trajectories to the outer planets and to 200 AU using a non-ideal solar sail. The
sail film temperature was limited to Tlim = 240◦C. Interestingly, figure 9 shows that T (ac) obeys nearly a
potential law for all targets,

T (Target, ac) ≈ c4(Target)ac5(Target)
c
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Figure 9. Temperature-limited optimal flyby with non-ideal solar sail

with −0.827 < c5(Target) < −0.601. The right side of figure 9 shows that vesc increases for more distant
targets because it is beneficial, in this case, to spend more time in the inner solar system to gain more energy.
Figure 9 shows that even near-term solar sails (ac ≈ 0.4 mm/s2) are able to reach Uranus within less than
10 years, and that even medium-term solar sails (ac ≈ 0.6 mm/s2) are able to reach Neptune and the inner
Edgeworth-Kuiper belt within less than 10 years. A more advanced solar sail, ac = 1.4 mm/s2, can reach
200 AU within less than 25 years. The vesc-curve for Jupiter shows a discontinuity for 1.1 mm/s2 < ac <
1.2 mm/s2 that is due to a change in the topology of the optimal trajectory: the optimal trajectories for
ac ' 1.2 mm/s2 perform only a single SPA whereas the optimal trajectory for ac = 1.1 mm/s2 performs a
double SPA. Thereby, the second SPA is not performed in order to maximize vesc. Such a second SPA would
require a larger aphelion, but more time would be required to reach this aphelion than would be saved due
to the larger escape velocity. The vesc-curves for more distant targets indicate no discontinuity because the
double SPAs are performed in order to maximize vesc. It is also interesting to note that the time-optimal
Jupiter flyby trajectory for ac / 0.65 mm/s2 is not a hyperbolic but an elliptic one (vesc < 0 km/s). Because
of the interesting features of Jupiter’s vesc-curve, optimal trajectories have been calculated for a wider range
of characteristic accelerations (0.4 mm/s2 ≤ ac ≤ 8.0 mm/s2) and for three different sail temperature limits
(200◦C, 240◦C, and 280◦C). The results for those calculations, shown in figure 10, will be described in the
next section. A translation of the sail temperature limits into sail film materials is not within the scope of
this paper because the allowed maximal sail film temperature depends not only on the film material but also
on the sail design (stresses, wrinkles, etc.).

E. Dependency of Minimal Flight Time on Sail Temperature Limit for Non-Ideal Solar Sails

Figure 10 shows for three different sail temperature limits (200◦C, 240◦C, and 280◦C) the minimal flight
times and the achieved escape velocities for temperature-limited optimal flyby trajectories to Jupiter. One
can see that there is a discontinuity – like the one observed in figure 9 – for all three temperature-limits,
but at different characteristic accelerations. For a higher Tlim, the optimal trajectory employs a single SPA
down to lower characteristic accelerations, until a double SPA is optimal. If one considers also very large
characteristic accelerations, a second discontinuity occurs in the range 6 mm/s2 / ac / 7 mm/s2. This
discontinuity is again due to a change in the topology of the optimal trajectory: the optimal trajectories
for ac ' 7 mm/s2 do not make a SPA because a SPA would take longer than a direct trajectory to Jupiter.
Direct trajectories are feasible in this performance regime because the maximal acceleration of the solar
sail is larger than the gravitational attraction of the sun (a0 = 5.93 mm/s2 at 1 AU). The relation ac/a0 is
independent of solar distance because both vary with 1/r2. For ac > a0, the sail’s acceleration capability
is more than enough to cancel solar gravitation, so that the solar sail does not need to orbit but is able
to fly directly away from the sun. Interestingly, figure 10 shows also that the flight time does not depend
considerably on Tlim or vesc but only on ac. Within the low/medium-performance regime (ac / 2.0 mm/s2)
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Figure 10. Temperature-limited optimal Jupiter flyby with non-ideal solar sail

Figure 11. Temperature-limited optimal transfer to 200AU with non-ideal solar sail

and the very high-performance regime (ac ' 3.0 mm/s2), T (ac) obeys nearly a potential law,

T (ac) ≈ c4a
c5
c

(c5 being different for both regimes), with a transition regime, where the T (ac)-curve bends.
Figure 11 shows for three different sail temperature limits (200◦C, 240◦C, and 280◦C) the minimal flight

times and the achieved escape velocities for temperature-limited optimal transfers to 200AU. The vesc-
curve does not show the strange features of Jupiter’s vesc-curve, because all SPAs are performed in order to
maximize vesc. Figure 11 shows that T (ac) and vesc(ac) obey a potential law for all sail temperature limits,

T (ac, Tlim) = c4(Tlim)ac5
c

with c5 = 0.543±0.011 and
vesc(ac, Tlim) = c6(Tlim)ac7

c .

with c7 = −0.605±0.006. Figure 11 shows that the minimal flight times depend considerably on the sail
temperature limit. For Tlim = 280◦C, a characteristic acceleration of about 1.0 mm/s2 is required to reach
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200 AU within 25 years from launch, whereas a characteristic acceleration of about 1.4 mm/s2 is required
for Tlim = 200◦C. Note that the solar sail design parameters can be very sensitive with respect to the
characteristic acceleration, as the following example may show: if a solar sail with a sail assembly loading
of σSA = 5g/m2 should be used to transport a payload (incl. spacecraft bus) of mPL = 100 kg to 200 AU,
ac = 1.0 mm/s2 yields – according to Eq. (14) – a sail area of A = (175 m)2, whereas ac = 1.4 mm/s2 yields
a sail area of A = (330 m)2. If the sail size is held at (175 m)2, the payload reduces to mPL = 28 kg. Another
possibility is to decrease the sail assembly loading to σSA = 2.6 g/m2, which can only be done with some
much more advanced sail fabrication/deployment technology.

VI. Summary and Conclusions

The material presented within this paper provides trajectory and performance trade-offs for missions
to the outer solar system and to near interstellar space (200 AU). A wide range of solar sail performance
levels and sail temperature limits has been considered. To the authors knowledge, all previously presented
trajectory analyses for solar system escape missions have been carried out for ideal high-performance sails.
Within this paper, optimal trajectories have been presented both for ideal and for non-ideal solar sails.
Thereby, also near/medium-term solar sails with a relatively moderate performance have been considered. It
was shown that a thorough trajectory analysis must consider the non-ideal reflectivity of the solar sail, which
yields minimal flight times that are about 5% longer than those of ideal sails. To the authors knowledge,
all previously presented trajectory analyses for solar system escape missions constrain the minimal solar
distance, with the argument that such a constraint enforces that some sail temperature limit will not be
exceeded during the closest solar approach. The trajectories calculated within this paper demonstrate that
faster trajectories can be obtained for a given sail temperature limit, if not the allowed minimal solar distance
but the allowed maximal sail temperature is directly used as an optimization constraint. For temperature-
limited trajectories, minimal flight times and solar system escape velocities have been presented for missions
to all outer planets and to near interstellar space. Although, especially for moderate-performance solar sails,
the topology of optimal trajectories is quite sophisticated, the required flight times and the achieved solar
system escape velocities obey very simple laws that are, however, not yet theoretically understood.
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