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ABSTRACT

The design and optimization of interplanetary trans-

fer trajectories is one of the most important tasks

during the analysis and design of a deep space mis-

sion. Due to their larger ∆V -capability, low-thrust

propulsions systems can significantly enhance or even

enable those missions. Searching low-thrust trajec-

tories that are optimal with respect to transfer time

or propellant consumption is usually a difficult and

time-consuming task that involves much experience

and expert knowledge, because the convergence be-

havior of traditional optimizers that are based on nu-

merical optimal control methods depends strongly on

an adequate initial guess, which is often hard to find.

Even if the optimizer finally converges to an ”opti-

mal” trajectory, this trajectory is typically close to

the initial guess that is rarely close to the (unknown)

global optimum. Within this paper, trajectory op-

timization is attacked from the perspective of arti-

ficial intelligence and machine learning, which is a

perspective quite different from that of optimal con-

trol theory. Inspired by natural archetypes, a novel

smart method for global low-thrust trajectory opti-

mization is presented that fuses artificial neural net-

works and evolutionary algorithms to so-called evo-

lutionary neurocontrollers. This paper outlines how

evolutionary neurocontrol works and how it could

be implemented. Using evolutionary neurocontrol,

low-thrust trajectories are optimized without an ini-

tial guess and without the attendance of an expert

in astrodynamics and optimal control theory. For

an exemplary mission to a near-Earth asteroid, its

performance for low-thrust trajectory optimization

and interplanetary mission analysis is assessed. It is

demonstrated that evolutionary neurocontrollers are

able to find spacecraft steering strategies that gener-

ate better trajectories – closer to the global optimum

– because they explore the search space more ex-

haustively than a human expert can do by using tra-

ditional optimal control methods. Finally, the use of

evolutionary neurocontrol for the analysis of a piloted

Mars mission using a spacecraft with a nuclear elec-

tric propulsion system is demonstrated within this

paper.

1 LOW-THRUST TRAJECTORY OPTIMIZATION

Innovative solar system exploration missions require ever
larger velocity increments (∆V s) and thus ever more de-
manding propulsion capabilities. Using the state-of-the-

art technique of chemical propulsion in combination with
(eventually multiple) gravity assist maneuvers for those
high-energy missions results in long, complicated, and in-
flexible mission profiles. Low-thrust propulsions systems
can significantly enhance or even enable high-∆V mis-
sions, since they utilize the propellant more efficiently –
like electric propulsion systems – or do not consume any
propellant at all – like solar sails, large ultra-lightweight
reflecting surfaces that utilize solely the freely available
solar radiation pressure for propulsion. Consequently,
they permit significantly larger ∆V s and/or larger pay-
load ratios and/or smaller launch vehicles, while at the
same time allowing direct trajectories with reduced flight
times, simpler mission profiles, and extended launch win-
dows, providing more mission flexibility.

This paper deals with the problem of searching optimal
interplanetary trajectories for low-thrust spacecraft. In
simple words, the spacecraft trajectory is the spacecraft’s
path in space from A (the initial body or orbit) to B (the
target body or orbit). Optimality can, in general, be de-
fined according to several objectives like transfer time
or propellant consumption. Since solar sails do not con-
sume any propellant, their trajectories are typically op-
timized with respect to transfer time alone. Trajectory
optimization for spacecraft with an electric propulsion
system is less straightforward, since transfer time min-
imization and propellant minimization are mostly com-
peting objectives, so that one objective can only be op-
timized at the cost of the other objective. Spacecraft
trajectories can also be classified with respect to the ter-
minal constraint. If, at arrival, the position rSC and the
velocity ṙSC of the spacecraft must match that of the tar-
get body (rT and ṙT, respectively), one has a rendezvous
problem. If only the position must match, one has a
fly-by problem. A spacecraft trajectory is obtained from
the (numerical) integration of the spacecraft’s equations
of motion, which contain terms for the external forces
that are acting on the spacecraft (gravitational forces
and ”disturbing” forces) and for the thrust force. Besides
the inalterable external forces, the trajectory is deter-
mined entirely by the variation of the thrust vector F(t),
which is typically described by a control function u(t).
Therefore, the actual optimization problem is to find the
optimal spacecraft control function u?(t) that yields the
optimal trajectory xSC[t] = (rSC[t], ṙSC[t]), where ’[t]’ de-
notes the time history of the preceding variable.

For spacecraft with high thrust propulsion systems like
chemical rockets, optimal interplanetary trajectories can
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be found relatively easily1, since only a few thrust phases
are necessary. These thrust phases are very short as com-
pared to the transfer time, so that they can be approx-
imated by singular events that change the spacecraft’s
velocity instantaneously while its position remains fixed.
In contrast to those high-thrust propulsion systems, low-
thrust propulsion systems must operate for a significant
part of the transfer to generate the necessary ∆V . Con-
sequently, the thrust vector F(t) is a continuous function
of time and the dimension of the solution space is infi-
nite. F(t) is manipulated through the nu-dimensional
spacecraft control function u(t) that is also a contin-
uous function of time. Therefore, the trajectory opti-
mization problem is to find the optimal spacecraft con-
trol function u?(t) in infinite-dimensional function space.
This problem can not be solved except for very simple
cases. What can be solved at least numerically, how-
ever, is a discrete approximation of the problem. For do-
ing that, the infinite-dimensional problem must be con-
verted into a finite-dimensional problem by numerical
discretization. Dividing the maximum allowed trans-
fer time interval [t0, tf,max] into τ finite elements, the
approximate trajectory optimization problem is then to
find an optimal spacecraft control history2 u?[t̄] ∈ Rnuτ ,
which gives the optimal trajectory x?

SC[t].3 Through dis-
cretization, the problem of finding u?(t) as an optimal
function in infinite-dimensional function space is reduced
to the problem of finding the optimal control history u?[t̄]
in a finite-dimensional parameter space, a space which is
usually still very high-dimensional. In terms of optimal
control theory, the discrete rendezvous problem, for ex-
ample, can be stated formally as:

Discrete rendezvous problem from the perspec-
tive of optimal control theory:

Find a spacecraft control history u[t̄] (t̄ ∈ {t̄0, . . . , t̄f−1 ≤
t̄τ−1}), which forces the state xSC(t) = (rSC(t), ṙSC(t)) of
the spacecraft from its initial value xSC(t̄0) to the state
xT(t̄) of the target body, along a trajectory that obeys
the dynamic constraint ẋSC(t) = G(xSC(t),u(t)) and the
terminal constraint xSC(t̄f ) = xT(t̄f ), and at the same
time minimizes some cost function J .

The resulting state function x?
SC[t] is the optimal trajec-

tory for the given problem. Thus the trajectory opti-
mization problem is actually a problem of finding the
optimal control history u?[t̄]. If the propellant mass mP

is to be minimized, J = mP(t̄f )−mP(t̄0) is an appropri-
ate cost function, if the transfer time is to be minimized,
J = t̄f − t̄0 is an appropriate cost function.

2 TRADITIONAL LOCAL LOW-THRUST
TRAJECTORY OPTIMIZATION METHODS

Traditionally, low-thrust trajectories are optimized by
the application of numerical optimal control methods
that are based on the calculus of variations. These meth-
ods can be divided into direct methods such as nonlinear

1as long as no gravity assist maneuvers are required
2the symbol t̄ denotes that time is descrete
3note that only the spacecraft control function is discretized,

whereas the trajectory is still continuous

programming (NLP) methods and indirect methods such
as neighboring extremal methods and gradient methods.
All these methods can be generally classified as local tra-
jectory optimization methods (LTOMs), where the term
optimization does not mean ”finding the best solution”
but rather ”finding a solution” [1]. Prior to optimiza-
tion, the NLP methods and the gradient methods require
an initial guess for the control history u[t̄], whereas the
neighboring extremal methods require an initial guess
for the starting adjoint vector of Lagrange multipliers
λλλ(t̄0) (costate vector) [2]. Figure 1 illustrates how tra-
jectory optimization is usually performed with a LTOM.

Figure 1: Low-thrust trajectory optimization using a lo-
cal trajectory optimization method

First, the target body and the initial conditions (launch
date, initial propellant mass, hyperbolic excess velocity
vector, etc.) are chosen according to the mission ob-
jectives and the launcher restrictions. Although those
parameters are crucial for mission performance, they are
typically chosen according to an expert’s judgment and
are not part of the actual optimization process. After
that, the initial guess for the control history (in the case
of a NLP or gradient method) is generated and numeri-
cally integrated to obtain a trajectory. The objective is
to come as close as possible to the target body, so that in
the next step the LTOM is able to converge. If the gen-
erated trajectory does not come close to the target body,
the initial guess has to be refined and – if several trial-
and-error cycles yield no acceptable result – the initial
conditions have to be modified (e.g. different launch date
and/or more initial propellant and/or larger hyperbolic
excess velocity). If the trajectory finally comes close
enough to the target body, it is taken as the initial guess
for the LTOM. If the LTOM does not converge, a new
initial guess must be conceived and the above steps must
be repeated, using eventually different initial conditions
again. If the LTOM finally converges, a locally optimal
trajectory is found, which is typically close to the initial
guess that is rarely close to the global optimum. Un-
fortunately, the convergence behavior of LTOMs (espe-
cially of indirect methods) is very sensitive to the initial
guess. Similar initial guesses often produce very dissim-
ilar optimization results, so that trajectory optimization
becomes sometimes ”more art than science” [3]. Since all
steps require frequent manual interactions and thus the
permanent attendance of an expert in astrodynamics and
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optimal control theory, the search for a good trajectory
can become very time-consuming and thus expensive.

3 EVOLUTIONARY NEUROCONTROL: A
SMART GLOBAL LOW-THRUST
TRAJECTORY OPTIMIZATION METHOD

Emanating from the drawbacks of traditional LTOMs, a
smart global trajectory optimization method (GTOM),
as it is sketched in figure 2, was developed
in [4]. This method was termed ”InTrance”, which
stands for ”Intelligent Trajectory optimization using
neurocontroller evolution”.

Figure 2: Low-thrust trajectory optimization using a
smart global trajectory optimization method

InTrance requires only the target body and intervals for
the initial conditions as input to find a near-globally4 op-
timal trajectory for the specified problem. Implementing
evolutionary neurocontrol as described in the sequel, it
works without an initial guess and without the perma-
nent attendance of a trajectory optimization expert. The
remainder of this section will explain the motivation for
evolutionary neurocontrol and the underlying concepts.

3.1 Motivation for Evolutionary Neurocontrol

Evolutionary neurocontrol (ENC) fuses artificial neural
networks (ANNs) with evolutionary algorithms (EAs)
to so-called evolutionary neurocontrollers (ENCs). Like
the underlying constructs, it is inspired by the natu-
ral processes of information processing and optimiza-
tion. Animal nervous systems incorporate natural evo-
lutionary neurocontrollers to control their actions, giv-
ing them marvelous capabilities. One brilliant example
for this proposition is the smart flight control system of
the housefly. The nervous system of the housefly com-
prises about 100 000 neurons. This natural neural net-
work manages the flight control of the fly as well as many
even more difficult tasks like finding food, finding a mate,
producing offspring, etc. Nature has optimized the per-
formance of the fly’s neurocontroller on this tasks with
respect to one single objective: survive to produce off-
spring. Nature has solved this problem through the re-
combination and mutation of the fly’s genetic material
and through natural selection, the famous so-called ”sur-
vival of the fittest”: smarter flies produce more offspring

4near -globally optimal, since for ”real-world” problems global
optimality can rarely be proved

and there is a high probability that some of them are
even smarter than their parents. This very elegant opti-
mization process runs without initial guess and without
employing the calculus of variations! So, if a natural evo-
lutionary neurocontroller can steer a housefly optimally
from A to B, why should an artificial evolutionary neu-
rocontroller not be able to steer a spacecraft optimally
from A to B? The remainder of this section explains how
this could be done.

3.2 Machine Learning

Within the field of artificial intelligence, one important
and difficult class of learning problems are reinforcement
learning problems, where the optimal behavior of the
learning system (called agent), as it is defined by an as-
sociative mapping from situations to actions S : X 7→ A,5

has to be learned solely through interaction with the en-
vironment, which gives an immediate or delayed eval-
uation6 J (also called reward or reinforcement) of the
agent’s behavior [5, 6]. The optimal strategy S? of the
agent is defined as the one that maximizes the sum of
positive reinforcements and minimizes the sum of neg-
ative reinforcements over time. If, given a situation
X ∈ X , the agent tries an action A ∈ A and the envi-
ronment immediately returns a scalar evaluation J(X, A)
of the (X, A) pair, one has an immediate reinforcement
learning problem. A more difficult class of learning prob-
lems are delayed reinforcement learning problems, where
the environment gives only a single evaluation J , collec-
tively for (X, A)[t], the sequence of (X, A) pairs occur-
ring in time during the agent’s operation.

3.3 Low-Thrust Trajectory Optimization from the
Perspective of Machine Learning

From the perspective of machine learning, a spacecraft
steering strategy may be defined as an associative map-
ping S that gives the actual spacecraft control u(t) from
some input X(t) ∈ X that comprises the variables that
are important for the optimal steering of the spacecraft
(the actual state of the relevant environment). The tra-
jectory can then be regarded as the result of the space-
craft steering strategy. The search for the optimal strat-
egy is a delayed reinforcement problem, since a strategy
can be evaluated only ex post, when the trajectory is
realized and a reward can be given according to the ful-
fillment of the optimization objective(s). From the per-
spective of machine learning, the rendezvous problem,
which was stated above from the perspective of optimal
control theory, may now be reformulated:

Discrete rendezvous Problem from the perspec-
tive of machine learning:

Find a spacecraft steering strategy S, which forces the
state xSC(t) = (rSC(t), ṙSC(t)) of the spacecraft from
its initial value xSC(t̄0) to the state xT(t̄) of the target
body, along a trajectory that obeys the dynamic con-
straint ẋSC(t) = G(xSC(t),u(t)) and the terminal con-

5X is called state space and A is called action space
6this evaluation is analogous to the cost function in optimal

control theory. To emphasize this fact, it will be denoted by the
same letter, J
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straint xSC(t̄f ) = xT(t̄f ), and at the same time maxi-
mizes some reward J .

The resulting steering strategy S? is the optimal space-
craft steering strategy for the given problem. Thus the
trajectory optimization problem is actually a problem
of finding the optimal spacecraft steering strategy S?.
A very obvious way to implement spacecraft steering
strategies is to use artificial neural networks, as they have
been successfully applied to ”learn” associative mappings
for a wide range of problems.

3.4 Artificial Neural Networks and Neurocontrol

Being inspired by the processing of information in animal
nervous systems, ANNs are a computability paradigm
that is alternative to conventional serial digital comput-
ers. ANNs are massively parallel, analog, fault toler-
ant, and adaptive [7]. They are composed of processing
elements (called neurons) that model the most elemen-
tary functions of the biological neuron. Linked together,
those elements show some characteristics of the brain,
like learning from experience, generalizing from previous
examples to new ones and extracting essential charac-
teristics from inputs containing noisy and/or irrelevant
data, so that they are relatively insensitive to minor vari-
ations in its input to produce consistent output [8].

Since the neurons can be connected in many ways, ANNs
exist in a wide variety. Here, however, only feedforward
ANNs are considered. Typically, feedforward ANNs have
a layered topology, where the neurons are organized hi-
erarchically in a number of so-called neuron layers. The
first neuron layer is called the input layer and has ni in-
put neurons that receive the network’s input. The last
neuron layer is called the output layer and has no output
neurons that provide the network’s output. All interme-
diate layers/neurons are called hidden layers/neurons. A
layered feedforward ANN, as it is used here, can be re-
garded as a continuous parameterized function (called
network function)

Nπππ : X ⊆ Rni → Y ⊂ (0, 1)no

that maps from a set of inputs X onto a set of outputs Y.
The parameter set πππ = (π1, . . . , πm) of the network func-
tion comprises the m internal parameters7 of the ANN.

Operating within so-called neurocontrollers (NCs),
ANNs have been successfully applied to reinforcement
learning problems [8]. Neurocontrol approaches to solve
reinforcement learning problems can be divided into two
categories, indirect (or critic-based) ones and direct ones.
The direct neurocontrol approach, which is used here,
employs a single ANN, which is called the action model
(or action network). The action network controls the
dynamical system by providing a control Y(t) ∈ Y from
some input X(t) ∈ X that contains the information that
is relevant to perform the control task. To keep things
simple, the term ’NC’ is used here for the ANN that is
precisely speaking ’the action network of the NC’.

NCs can be applied to low-thrust trajectory optimiza-
tion, which is a delayed reinforcement learning problem:

7the weights and the biases of the neurons

if a NC is used to direct the spacecraft’s trajectory by
determining the spacecraft control at each time step t̄i,
then this NC receives a single reward for its control his-
tory u[t̄] (i.e. for its behavior) at the final time step t̄f ,
when the trajectory can be evaluated. Note that the
NC’s behavior is completely characterized by its network
function Nπππ (that is again completely characterized by
its parameter set πππ). If the correct output is known for
a set of given inputs (the training set), the network error
(i.e. the difference between the actual output and the
correct output) can be measured and utilized to learn
the optimal network function N? := Nπππ? by adapting πππ
in a way that the network error is minimized. A variety
of learning algorithms has been developed for this kind
of learning problems, the backpropagation algorithm – a
gradient-based method – being the most widely known.
However, learning algorithms for ANNs that rely on a
training set fail when the correct output for a given in-
put is not known, as it is the case for delayed reinforce-
ment learning problems. The next section will address a
learning method that may be used for determining N? in
this case.

3.5 Evolutionary Algorithms and Evolutionary
Neurocontrol

EAs (sometimes also called GAs, genetic algorithms) are
proven to be robust methods for finding global optima
in very high dimensional search spaces. They have been
successfully applied as a learning method for ANNs [9,
10, 11] as well as for a wide range of other optimization
problems. Therefore, they are expected to be an efficient
method for finding the NC’s optimal network function in
the case of delayed reinforcement learning problems.

EAs use a vocabulary borrowed from biology. The key el-
ement of an EA is a population that comprises numerous
individuals ξj (j ∈ {1, ..., q}), which are potential solu-
tions to the given optimization problem. All individuals
of the (initially randomly created) population are evalu-
ated according to a fitness function8 J for their suitabil-
ity to solve the problem. The fitness value of an individ-
ual J(ξj) is crucial for its probability to reproduce and
to create offspring into a newly created population, be-
cause a selection scheme (the environment) selects fitter
individuals with a greater probability for reproduction
than less fit ones. The selected parents undergo a series
of ”genetic” transformations (mutation, recombination)
to produce offspring that consists of a mixture of the par-
ents ”genetic material”. Under the selection pressure of
the environment, the individuals – which are also called
chromosomes or strings – strive for survival. After some
reproduction cycles the population converges against a
single solution ξ?, which is in the best case the globally
optimal solution for the given problem.

The application of an EA to search for the NC’s optimal
network function makes use of the fact that a NC param-
eter set can be mapped onto a real valued string, which
provides an equivalent description of the NC’s network

8this fitness function is also analogous to the cost function in
optimal control theory. To emphasize this fact, it will be denoted
by the same letter, J

Deutscher Luft- und Raumfahrtkongress 2004, Dresden, Germany
Copyright (c) 2004 by DLR



function. By searching for the fittest individual the EA
searches for the NC’s optimal network function. Figure 3
sketches the transformation of the optimal chromosome
into the optimal trajectory.�

�
�
�

optimal chromosome/individual/string ξ?

=
optimal NC parameter set πππ?

�
�

�
�

optimal NC network function N?

=
optimal spacecraft steering strategy S?

�� ��optimal spacecraft control function u?[t]

�� ��optimal spacecraft trajectory x?
SC[t]

?

?

?

Figure 3: Transformation of the optimal chromosome
into the optimal trajectory

3.6 Neurocontroller Input and Output

The two fundamental questions concerning the utiliza-
tion of a NC for spacecraft steering are:

1. What input should the NC get? (or ”What should
the NC know to steer the spacecraft?”) and

2. What output should the NC give? (or ”What
should the NC do to steer the spacecraft?”)

To be robust, a spacecraft steering strategy should not
depend explicitly on time. To determine the actual op-
timal spacecraft control u(t̄i), the spacecraft steering
strategy should ”have to know” – at any time step t̄i
– only the actual spacecraft state xSC(t̄i) and the actual
target body state xT(t̄i):

S : X = {(xSC,xT)} 7→ {u}.

If a spacecraft propulsion system other than a solar sail
is employed, the actual propellant mass mP(t̄i) might be
considered as additional input:

S : X = {(xSC,xT,mP)} 7→ {u}.

The number of potential input sets, however, is still large:
xSC and xT may be given in coordinates of any reference
frame and in combinations of them. Also the difference
xT−xSC may be used, again in coordinates of any refer-
ence frame and in combinations of them.

The number of potential output sets is also large: each
output neuron gives a value in the range (0, 1). There
are many alternatives to define the spacecraft control u,
and there are again many ways to calculate u from the
NC output. The following approach gave good results
for the majority of problems: the NC provides a three-
dimensional output vector d′′ ∈ (0, 1)3, from which a

unit vector in the desired thrust direction – the so-called
direction unit vector d – is calculated via

d′ = 2d′′ −

1
1
1

 ∈ (−1, 1)3 and d = d′/|d′|

For solar sailcraft, u = d and thus

S : {(xSC,xT)} 7→ {d}.

For electrically propelled spacecraft, the NC output must
include the engine throttle χ, so that u = (d, χ) and thus

S : {(xSC,xT,mP)} 7→ {d, χ}.

3.7 Implementation of Evolutionary Neurocontrol

This section outlines, how ENC is applied within In-
Trance for low-thrust trajectory optimization. To find
the optimal spacecraft trajectory, the ENC method is
running in two loops (see figure 4).

Figure 4: Low-thrust trajectory optimization using evo-
lutionary neurocontrol

Within the inner trajectory integration loop, an NC
steers the spacecraft according to its network function Nπππ

that is completely defined by the NC’s parameter set πππ,
which is set and evaluated by the EA in the outer NC op-
timization loop. The EA holds a population {πππ1, . . . ,πππq}
of NCs (i.e. NC parameter sets) and uses the trajec-
tory integration loop to test all population members πππj

for their suitability to generate an optimal trajectory.
Within the trajectory optimization loop, the NC takes
the actual spacecraft state xSC(t̄i) (starting from t̄0) and
that of the target body xT(t̄i) as input, and maps from
them onto some output, from which – after some trans-
formations – the actual spacecraft control u(t̄i) is cal-
culated. Then, xSC(t̄i) and u(t̄i) are inserted into the
equations of motion, which are numerically integrated
over one time step to yield xSC(t̄i+1). This state is fed
back into the NC. The trajectory integration loop runs
until the accuracy of the trajectory with respect to the
terminal constraint is sufficient or until some time limit
is reached. Then, back in the NC optimization loop,
the NC’s trajectory is rated by the EA’s fitness function.
This fitness value is crucial for the individual’s probabil-
ity to reproduce and to create offspring. Under the se-
lection pressure of the environment the EA breeds NCs
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that generate more and more suitable steering strategies
that in turn generate better and better trajectories. The
EA finally converges against a single steering strategy,
which gives in the best case the globally optimal trajec-
tory x?

SC[t], or at least a near-globally optimal one.

If an EA is already employed for the evolution of the NC,
it is manifest to employ this EA also for the parallel op-
timization of additional problem parameters, which can
be done without major additional effort. Therefore, in
InTrance, the following parameters are additionally en-
coded on the chromosome, making them an explicit part
of the optimization problem: (1) the launch date, (2)
the hyperbolic excess velocity vector, and (3) the initial
propellant mass.

4 RESULTS

To assess the performance of ENC for low-thrust tra-
jectory optimization, InTrance was used to re-calculate
trajectories for problems, for which trajectories have
been be found in the literature, providing the best
benchmarks available (henceforth called reference prob-
lems/trajectories).

Within this paper, the convergence behavior of ENC and
the quality of the obtained solutions is assessed for an
exemplary rendezvous mission to a near-Earth asteroid
(1996FG3).9 For solar sailcraft with a characteristic ac-
celeration10 of 0.14 mm/s2 (ideally reflecting 50 m×50 m
solar sail, launch mass 148 kg, useful mass11 75 kg) an
”optimal” trajectory was calculated in refs. [14, 15] using
a LTOM. This reference trajectory launches at Earth at
13 Aug 06 and takes 1640 days to rendezvous 1996FG3,
if the solar sailcraft is inserted directly into an inter-
planetary trajectory with an hyperbolic excess energy of
C3 = 4km2/s2.

In the first experiment, InTrance was run five times –
using different initial NC populations – for the reference
launch date, but the hyperbolic excess energy was re-
duced to C3 = 0km2/s2. The accuracy limit for the
distance and the relative velocity at the target was set
to 300 000 km and 100 m/s, respectively, which is com-
patible with the reference trajectory. The best found
InTrance-trajectory (figure 5) is 135 days faster (9.0%)
than the reference trajectory, while reducing at the same
time the C3-requirement from 4 km2/s2 to 0 km2/s2, thus
permitting a reduction of the launcher requirements and
eventually of launch costs. The final distance to 1996FG3

is approx. 200 000 km and the final relative velocity to
1996FG3 is approx. 65 m/s, both being better than the
required values.

In the second experiment, InTrance was used to find the
optimal launch date for the 1996FG3 rendezvous problem
(with 0 km2/s2). Since the optimal launch date is not
evident, it was encoded additionally on the chromosome,
leaving it to the EA to co-evolve it with the NC.

9the results for further reference missions can be found in [4,
12, 13]

10maximum acceleration of a solar sail at Earth distance from
the sun

11spacecraft bus plus scientific payload

Figure 5: Best InTrance-trajectory for the 1996FG3 ren-
dezvous (reference launch date)

Figure 6: 1996FG3 rendezvous (optimized launch date):
Trajectories for five different initial NC popu-
lations

Figure 6 shows the results for five runs with different ini-
tial NC populations. The worst found trajectory takes
only 1.7% longer to rendezvous 1996FG3 than the best
one (shown in figure 7). The small variance of the five
results gives evidence for a good convergence behavior
of ENC. Taking 1435 days to rendezvous 1996FG3, the
trajectory is now 205 days (14%) faster than the refer-
ence trajectory. The final distance to 1996FG3 is approx.
267 000 km and the final relative velocity to 1996FG3 is
approx. 89 m/s, both being better than the required val-
ues. The optimal launch date was found to be 22 Oct 05,
295 days earlier than the reference launch date.

In the third experiment, to find out whether a given hy-
perbolic excess energy of 4 km2/s2 could be spent more
efficiently than done by the reference trajectory, the op-
timal direction of the hyperbolic excess velocity vector
was encoded additionally on the chromosome, leaving
it to the EA to co-evolve it with the NC. The optimal
launch date for this problem was found to be 12 Feb 06,
a half year earlier than the reference launch date. Fig-
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Figure 7: 1996FG3 rendezvous (optimized launch date):
Best InTrance-trajectory for C3 = 0 km2/s2

Figure 8: 1996FG3 rendezvous (optimized launch date):
Best InTrance-trajectory for C3 = 4 km2/s2

ure 8 shows the best found trajectory for this launch
date. This trajectory takes only 944 days to rendezvous
1996FG3, being 696 days (74%) faster than the reference
trajectory.

To assess the trajectory optimization capability of ENC
also for low-thrust propulsion systems other than solar
sails, and to assess the capability of near-term solar sail
propulsion for this NEA rendezvous mission, InTrance
was used to calculate trajectories for spacecraft with an
already existing solar electric propulsion (SEP) system,
NASA’s NSTAR ion thruster, which was flown on the
Deep Space 1 mission. The mission objective was as
before: deliver a useful mass of 75 kg to 1996FG3.

In contrast to solar sailcraft trajectory optimization,
SEP spacecraft trajectories may not only be optimized
with respect to transfer time but also with respect to the
required propellant mass, and usually a trade-off between

Figure 9: Trajectory options for 1996FG3 rendezvous
with SEP spacecraft

both optimization objectives has to be made, so that an
”optimal” solution is only one of many (Pareto-) opti-
mal solutions. Figure 9 exemplies two InTrance-solutions
for this problem. Using an NSTAR thruster, the same
useful mass of 75 kg could be delivered to 1996FG3 within
294 days (with a propellant mass of 46.8 kg) or even
within 270 days, if slightly more propellant (51.0 kg) is
consumed.

The results demonstrate that at least for this mission, a
near-term solar sail is outperformed by the SEP option, if
only the transfer time is considered. This is not surpris-
ing, since the required ∆V for the transfer is moderate.
The launch mass of the SEP option, however, is larger
(229.9 kg and 234.5 kg, respectively) than for the solar
sail option (148.0 kg), requiring eventually a heavier and
thus more expensive launch vehicle. If ground operation
costs can be kept low (e.g. due to a high on-board au-
tonomy during transfer), and if the transfer time plays
a subordinate role with respect to cost, the solar sail
might be the favorable option for such a mission. In any
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case, on the way to more advanced solar sails, as they
are required for high-∆V missions, the development of
near-term solar sails is an indispensable first stepping
stone, even if their performance is not superior to that
of state-of-the-art electric propulsion systems.

To perform trajectory optimization with ENC, the fol-
lowing parameters have to be fixed: (1) the NC’s input
set, (2) the NC’s output set, (3) the NC’s topology, (4)
some EA parameters like population size, mutation rate,
etc., and (5) the EA’s fitness function. Various combi-
nations of those parameters have been investigated. The
performance of the ENC was found to be relatively in-
sensitive with respect to different settings of (3) and (4).
The dependency on the EA’s fitness function (5) is rea-
sonable, since this function has not only to decide au-
tonomously which trajectories are good and which are
not, but also which trajectories are promising for future
”cultivation” and which are not. A fitness function that
works well for the majority of problems was found. The
dependency on the NC’s input set (1) and output set
(2) is also reasonable, since they determine what the NC
knows about its environment and what the NC can do to
steer the spacecraft. Again, input and output sets that
work well for the majority problems were found.

For all trajectory calculations a standard feedforward
ANN with 30 neurons in the hidden layer was used. The
maximum number of integration steps was usually set to
values between 100 and 400, allowing the NC to change
the spacecraft control every 2 − 5 days. Depending on
the number of integration steps, the total computation
time for one run of InTrance was in the order of 1 − 8
hours on a 1.3 GHz personal computer.

The InTrance-generated trajectories are quite accurate
with respect to the terminal constraint, however, they
are not optimal solutions in the strict sense, since the ter-
minal constraint is not exactly met. To improve the ac-
curacy of the trajectories further, an InTrance-trajectory
can be taken as the initial guess for a LTOM.

5 APPLICATION EXAMPLE: MISSION
ANALYSIS FOR A PILOTED LOW-THRUST
MARS MISSION

To provide a further example of how InTrance can be
applied to support space mission analysis, it was used
to analyze the feasibility of a piloted Mars mission for
spacecraft using a nuclear electric propulsion (NEP) sys-
tem.

Beyond the ISS and the Moon, Mars is the logical next
step towards the manned exploration and conquest of
space. Differing from ”ordinary” robotic missions due to
large payloads and restricted flight times, the feasibility
of piloted Mars missions depends crucially on an ade-
quate propulsion system. To reduce the risk for the crew,
a short mission duration (of less than approximately two
years) and a short stay time (of less than approximately
three months) is desirable (fast mission). Such a require-
ment precludes the application of chemical propulsion
systems, which necessitate in this case an immense effort
(up to several thousand tons in LEO for an Earth return

vehicle mass of about 75 t), since at least one trajectory
leg requires a large ∆V . Due to their much larger spe-
cific impulse, low-thrust propulsion systems are expected
to enable relatively short missions with reasonable effort.
InTrance was employed to analyze mission opportunities
for an exemplary spacecraft with a NEP system (300 N
maximum thrust, 6000 s specific impulse, 160 t launch
mass at Earth, 75 t Earth return vehicle mass), provid-
ing an illustrative example of how InTrance is recently
used at DLR to analyze the capability of various low-
thrust propulsion systems to enable fast and flexible pi-
loted Mars missions [16, 17].

Using InTrance, time-optimal trajectories have been
found to have three different topologies (A, B, and C,
figure 10), depending (1) on the constellation of Earth
and Mars at the respective departure, (2) on the closest
tolerable solar distance (rmin), and (3) on the maximum
relative velocity at the target body.12 Within this cate-
gorization, trajectories of type A neither cross the orbit
of Earth nor that of Mars. They have short transfer
times and require a moderate ∆V . However, Type A
trajectories are only possible for favorable constellations
of the two planets (type A phase). Trajectories of type
B cross the orbit of Earth, moving thereby closer to the
sun. They have longer transfer times and require a high
to very high ∆V . Trajectories of type C move farther
away from the sun than Mars, having long to very long
transfer times and a moderate to high ∆V -requirement.
Type B and C phases are defined accordingly as the time
intervals, in which type B and C trajectories are time-
optimal due to the constellation of Earth and Mars at
departure. The phases alternate (A→C→B→A→. . . for
the Earth-Mars transfer and A→B→C→A→. . . for the
Mars-Earth transfer) as similar constellations recur.

Figure 11 shows for an Earth return trajectory, how the
transfer time varies within one A→B→C-cycle. The left
part of the downward slope is associated with type C
trajectories, the right part of the downward slope is asso-
ciated with type A trajectories, and the upward slope is
associated with type B trajectories. Thus type C trajec-
tories evolve gradually into type A trajectories, whereas
there is a tremendous increase in flight time, when type B
trajectories become non-optimal and type C trajectories
provide the time-optimal option to return to Earth. As
it can be seen, type B trajectories can also be flown later
in time, if a closer solar approach is tolerated. In this
case, a trade-off has to be made concerning the medical
risk for the crew (long transfer-time vs. close solar fly-
by). A similar diagram can be drawn for the Earth-Mars
leg of the mission. What is more meaningful, however, is
to plot the transfer time for this leg against the arrival
date at Mars, together with a plot of the Mars-Earth
transfer time against the departure date at Mars, as it is
done in figure 12 for rmin = 0.7 AU.

Looking at the displacement of both curves, one can see
that for a short stay at Mars, the combination of a short

12within this paper, a maximum relative (hyperbolic) velocity
of 6 km/s was used for Mars entry and a maximum (hyperbolic)
velocity of 8 km/s was used for Earth entry, in accordance with [18]
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Figure 10: Trajectory types (A, B, and C, see text) for
Earth-Mars and Mars-Earth transfers

Figure 11: Transfer time for Earth return in dependency
of the departure date at Mars and the mini-
mum tolerable solar distance rmin

Figure 12: Transfer times against arrival/departure date
at Mars (rmin = 0.7 AU)

Figure 13: Mission duration against stay time at Mars
(rmin = 0.7 AU)

Earth-Mars leg with a short Mars-Earth leg (a type A-A
trajectory pair) is not possible with the given propulsion
system. On the basis of this diagram, different options
for a piloted mission can be discussed. The horizontal
bar of the ”H” gives the stay time and the two vertical
bars give the combined transfer time, so that the size
of the ”H” defines the total mission duration. For each
stay time-value a minimal flight time exists, which can
be plotted against the stay time, as it is done in fig-
ure 13. As this diagram shows – using the given space-
craft and propulsion system parameters – a stay time
of three month can be realized within a total mission
duration of 561 days (1.54 years). For a total mission
duration of 2 years, the stay time at Mars can be ex-
tended to about 140 days (4.7 months). The diagram
shows also that – using the given propulsion system –
type A-A transfers with short total flight durations are
only possible for long stay times at Mars of about 600
days.
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6 SUMMARY AND CONCLUSIONS

Within this paper, low-thrust trajectory optimiza-
tion was attacked from the perspective of machine
learning. Inspired by natural archetypes, a smart
global method for spacecraft trajectory optimization
was proposed that fuses artificial neural networks
and evolutionary algorithms to evolutionary neurocon-
trollers. This method was termed InTrance, which
stands for ”Intelligent Trajectory optimization using
neurocontroller evolution”. From the perspective of ma-
chine learning, a trajectory is regarded as the result
of a steering strategy that manipulates the spacecraft’s
thrust vector according to the actual state of the space-
craft and the target body. An artificial neural network is
used as a so-called neurocontroller to implement such a
spacecraft steering strategy. This way, the trajectory is
defined by the internal network parameters of the neuro-
controller. An evolutionary algorithm is used for finding
the optimal network parameters. The trajectory opti-
mization problem is solved, if the parameter set that
generates the optimal trajectory is found. Using an evo-
lutionary algorithm for the optimization of the neuro-
controller, this algorithm may be additionally used for
finding optimal initial conditions.

Within this paper, InTrance was applied to an inter-
planetary low-thrust trajectory optimization problem, a
rendezvous with a near-Earth asteroid, for which a ref-
erence trajectory was found in the literature. The re-
calculation of the reference problem revealed that the
trajectory, which has been generated using a local tra-
jectory optimization method, is quite far from the global
optimum. Using InTrance, the transfer time was re-
duced by 74%. Since evolutionary neurocontrollers ex-
plore the trajectory search space more exhaustively than
a human expert can do by using traditional optimal con-
trol methods, they are able to find spacecraft steering
strategies that generate better trajectories, which are
closer to the global optimum. The obtained InTrance-
trajectories are sufficiently accurate with respect to the
terminal constraint. If a more accurate solution is re-
quired, the InTrance-solution might be used as an ini-
tial guess for some local trajectory optimization method.
Unlike the traditional methods, InTrance runs without
an initial guess and without the permanent attendance of
an expert in astrodynamics and optimal control theory.
Within this paper, the use of evolutionary neurocontrol
was also demonstrated for the analysis of a piloted Mars
mission using a spacecraft with a nuclear electric propul-
sion system. Being problem-independent, the applica-
tion field of evolutionary neurocontrol may be extended
to a variety of other optimal control problems.
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