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ABSTRACT

Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a dif-

ficult and time-consuming task that involves much experience and expert knowledge in

astrodynamics and optimal control theory. This is because the convergence behavior

of traditional local optimizers, which are based on numerical optimal control methods,

depends on an adequate initial guess, which is often hard to find, especially for very-

low-thrust trajectories that necessitate many revolutions around the sun. The obtained

solutions are typically close to the initial guess that is rarely close to the (unknown) global

optimum. Within this paper, trajectory optimization problems are attacked from the per-

spective of artificial intelligence and machine learning. Inspired by natural archetypes, a

smart global method for low-thrust trajectory optimization is proposed that fuses artificial

neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers.

This novel method runs without an initial guess and does not require the attendance of

an expert in astrodynamics and optimal control theory. This paper details how evolu-

tionary neurocontrol works and how it could be implemented. The performance of the

method is assessed for three different interplanetary missions with a thrust to mass ratio

< 0.15mN/kg (solar sail and nuclear electric).

INTRODUCTION

This paper deals with the problem of searching op-
timal interplanetary trajectories for very-low-thrust
spacecraft. Two propulsion systems are considered:
solar sails (large ultra-lightweight reflecting surfaces
that utilize solely the freely available solar radia-
tion pressure for propulsion), and a nuclear elec-
tric propulsion (NEP) system with constant thrust
and specific impulse. The optimality of a trajectory
can be defined according to several objectives, like
transfer time or propellant consumption. Because
solar sails do not consume any propellant, their
trajectories are typically optimized with respect to
transfer time alone. Trajectory optimization for
spacecraft with a SEP system is less straightfor-
ward because transfer time minimization and pro-
pellant minimization are mostly competing objec-
tives, so that one objective can only be optimized
at the cost of the other objective. Spacecraft tra-
jectories can also be classified with respect to the
terminal constraint. If, at arrival, the position rSC

and the velocity ṙSC of the spacecraft must match
that of the target (rT and ṙT, respectively), one has
a rendezvous problem. If only the position must
match, one has a flyby problem. A spacecraft tra-
jectory is obtained from the (numerical) integra-
tion of the spacecraft’s equations of motion. Be-
sides the inalterable external forces, the trajectory
xSC[t] = (rSC[t], ṙSC[t]) is determined entirely by the
variation of the thrust vector (’[t]’ denotes the time
history of the preceding variable). The thrust vec-
tor F(t) of low-thrust propulsion systems is a con-
tinuous function of time. It is manipulated through
the nu-dimensional spacecraft control function u(t)
that is also a continuous function of time. The tra-
jectory optimization problem is to find the optimal
spacecraft control function u?(t) that yields the op-
timal trajectory x?

SC[t]. This problem can not be
solved except for very simple cases. What can be
solved, at least numerically, however, is a discrete
approximation of the problem. Dividing the allowed
transfer time interval [t0, tf,max] into τ finite ele-
ments, the discrete trajectory optimization problem
is then to find the optimal spacecraft control his-
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tory u?[t̄] ∈ Rnuτ that yields the optimal trajectory
x?

SC[t] (the symbol t̄ denotes a discrete time step;
note that only the spacecraft control function is
discrete, whereas the trajectory is still continuous).
Through discretization, the problem of finding the
optimal function u?(t) in infinite-dimensional func-
tion space is reduced to the problem of finding the
optimal control history u?[t̄] in a nuτ -dimensional
parameter space (a space which is usually still very
high-dimensional). For optimality, some cost func-
tion J must be minimized. If the propellant mass
mP is to be minimized, J = mP(t̄0)−mP(t̄f ) = ∆mP

is an appropriate cost function, if the transfer time
is to be minimized, J = t̄f − t̄0 = T is an appropri-
ate cost function.

TRADITIONAL LOCAL LOW-THRUST
TRAJECTORY OPTIMIZATION METHODS

Traditionally, low-thrust trajectories are optimized
by the application of numerical optimal control
methods that are based on the calculus of varia-
tions. These methods can be divided into direct
methods, such as nonlinear programming (NLP)
methods, and indirect methods, such as neighbor-
ing extremal methods and gradient methods. All
these methods can generally be classified as local
trajectory optimization methods (LTOMs), where
the term optimization does not mean finding the
best solution but rather finding a solution [1]. Prior
to optimization, the NLP methods and the gradient
methods require an initial guess for the control his-
tory u[t̄], whereas the neighboring extremal meth-
ods require an initial guess for the starting adjoint
vector of Lagrange multipliers λλλ(t̄0) (costate vec-
tor) [2]. Unfortunately, the convergence behavior
of LTOMs (especially of indirect methods) is very
sensitive to the initial guess, so that an adequate
initial guess is often hard to find, even for an ex-
pert in astrodynamics and optimal control theory.
Similar initial guesses often produce very dissim-
ilar optimization results, so that the initial guess
can not be improved iteratively and trajectory op-
timization becomes more of an art than science [3].
Even if the optimizer finally converges to an op-
timal trajectory, this trajectory is typically close
to the initial guess that is rarely close to the (un-
known) global optimum. Because the optimization
process requires nearly permanent attendance of the
expert, the search for a good trajectory can become
very time-consuming and expensive. Another draw-
back of LTOMs is the fact that the initial conditions
(launch date, initial propellant mass, hyperbolic ex-
cess velocity vector, etc.) – although they are cru-
cial for mission performance – are generally chosen

according to the expert’s judgment and are there-
fore not part of the actual optimization method.

EVOLUTIONARY NEUROCONTROL: A
SMART GLOBAL LOW-THRUST

TRAJECTORY OPTIMIZATION METHOD

To evade the drawbacks of LTOMs, a smart global
trajectory optimization method (GTOM) was de-
veloped by the author [4]. This method was termed
InTrance, which stands for Intelligent Trajectory
optimization using neurocontroller evolution. To
find a near-globally1 optimal trajectory, InTrance
requires only the target body and intervals for the
initial conditions as input. Implementing evolution-
ary neurocontrol (ENC), InTrance runs without an
initial guess and does not require the attendance
of a trajectory optimization expert. The remainder
of this section will sketch the motivation for ENC
and explain the underlying concepts, as well as the
application of ENC to solve low-thrust trajectory
optimization problems.

1. Motivation for Evolutionary Neurocontrol

ENC fuses artificial neural networks (ANNs) and
evolutionary algorithms (EAs) to so-called evolu-
tionary neurocontrollers (ENCs). Like the underly-
ing concepts, it is inspired by the natural processes
of information processing and optimization. Ani-
mal nervous systems incorporate natural evolution-
ary neurocontrollers to control their actions, giving
them marvelous capabilities. The smart flight con-
trol system of the housefly might provide an exam-
ple. The nervous system of the housefly comprises
about 105 neurons. This small natural neural net-
work manages the flight control of the fly, as well
as many even more difficult tasks. Nature has op-
timized the performance of the fly’s neurocontroller
on this tasks through the recombination and muta-
tion of the fly’s genetic material and through nat-
ural selection: smarter flies produce more offspring
and there is a high probability that some of them
are even smarter than their parents. So, if a natural
evolutionary neurocontroller is able to steer a house-
fly optimally from A to B, why should an artificial
evolutionary neurocontroller not be able to steer a
spacecraft optimally from A to B, which seems to be
a much simpler problem? The remainder of this sec-
tion will describe how such an artificial evolutionary
neurocontroller could be implemented.

1Near -globally optimal because global optimality can
rarely be proved for real-world problems.
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2. Machine Learning

Within the field of artificial intelligence, one im-
portant and difficult class of learning problems are
reinforcement learning problems, where the opti-
mal behavior of the learning system (called agent)
has to be learned solely through interaction with
the environment, which gives an immediate or de-
layed evaluation2 J (also called reward or reinforce-
ment) [5, 6]. The agent’s behavior – it’s strategy –
is defined by an associative mapping from situations
to actions S : X 7→ A3. The optimal strategy S? of
the agent is defined as the one that maximizes the
sum of positive reinforcements and minimizes the
sum of negative reinforcements over time. If, given
a situation X ∈ X , the agent tries an action A ∈ A
and the environment immediately returns a scalar
evaluation J(X, A) of the (X, A) pair, one has an
immediate reinforcement learning problem. A more
difficult class of learning problems are delayed re-
inforcement learning problems, where the environ-
ment gives only a single evaluation J(X, A)[t], col-
lectively for the sequence of (X, A) pairs occurring
in time during the agent’s operation.

From the perspective of machine learning, a
spacecraft steering strategy may be defined as an
associative mapping S that gives – at any time along
the trajectory – the current spacecraft control u(t̄)
from some input X(t̄) ∈ X that comprises the vari-
ables that are relevant for the optimal steering of
the spacecraft (the current state of the relevant en-
vironment). Because the trajectory is the result of
the spacecraft steering strategy, the trajectory op-
timization problem is actually a problem of finding
the optimal spacecraft steering strategy S?. This is
a delayed reinforcement problem because a space-
craft steering strategy can not be evaluated before
its trajectory is known. Only then a reward can be
given according to the fulfillment of the optimiza-
tion objective(s) and constraints. One obvious way
to implement spacecraft steering strategies is to use
artificial neural networks because they have been
successfully applied to learn associative mappings
for a wide range of problems.

3. Artificial Neural Networks and Neurocon-
trol

Being inspired by the processing of information in
animal nervous systems, ANNs are a computabil-
ity paradigm that is alternative to conventional se-
rial digital computers. ANNs are massively paral-

2This evaluation is analogous to the cost function in opti-
mal control theory. To emphasize this fact, it will be denoted
by the same symbol, J .

3X is called state space and A is called action space.

lel, analog, fault tolerant, and adaptive [7]. They
are composed of processing elements (called neu-
rons) that model the most elementary functions of
biological neurons. Linked together, those elements
show some characteristics of the brain, for example,
learning from experience, generalizing from previ-
ous examples to new ones and extracting essential
characteristics from inputs containing noisy and/or
irrelevant data, so that they are relatively insen-
sitive to minor variations in its input to produce
consistent output [8].

Because the neurons can be connected in many
ways, ANNs exist in a wide variety. Here, however,
only feedforward ANNs are considered. Feedfor-
ward ANNs have typically a layered topology, where
the neurons are organized in a number of neuron
layers. The first neuron layer is called the input
layer and has ni input neurons that receive the net-
work’s input. The last neuron layer is called the
output layer and has no output neurons that pro-
vide the network’s output. All intermediate lay-
ers/neurons are called hidden layers/neurons. A
feedforward ANN, as it is used here, can be regarded
as a continuous parameterized function (called net-
work function)

Nπππ : X ⊆ Rni → Y ⊆ (0, 1)no

that maps from a set of inputs X onto a set of out-
puts Y. The parameter set πππ = {π1, . . . , πm} of
the network function comprises the m internal pa-
rameters of the ANN (the weights of the neuron
connections and the biases of the neurons).

ANNs have been successfully applied as neuro-
controllers (NCs) to reinforcement learning prob-
lems [8]. An ANN controls a dynamical system
by providing a control Y(t) ∈ Y from some input
X(t) ∈ X that contains the relevant information
for the control task. Note that the NC’s behavior is
completely characterized by its network function Nπππ

(that is again completely characterized by its para-
meter set πππ). If the correct output is known for a
set of given inputs (the training set), the difference
between the given output and the correct output
can be utilized to learn the optimal network func-
tion N? := Nπππ? by adapting πππ in a way that mini-
mizes this difference for all input/output pairs in the
training set. A variety of learning algorithms has
been developed for this kind of learning, the back-
propagation algorithm – a gradient-based method –
being the most widely known. Unfortunately, learn-
ing algorithms that rely on a training set fail when
the correct output for a given input is not known,
as it is the case for delayed reinforcement learning
problems. The next section will address a learning
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method that may be used for determining N? in this
case.

4. Evolutionary Algorithms and Evolutionary
Neurocontrol

EAs are robust methods for finding global optima
in very high dimensional search spaces. They have
been successfully applied as a learning method for
ANNs, as well as for a wide range of other opti-
mization problems [9, 10, 11]. EAs use a vocab-
ulary borrowed from biology. The key element of
an EA is a population that comprises numerous in-
dividuals ξj∈{1,...,q}, which are potential solutions
for the given optimization problem. All individu-
als of the (initially randomly created) population
are evaluated according to a fitness function4 J for
their suitability to solve the problem. The fitness
of each individual J(ξj) is crucial for its probability
to reproduce and to create offspring into a newly
created population because fitter individuals are se-
lected with a greater probability for reproduction
than less fit ones. The selected parents undergo
a series of genetic transformations (mutation, re-
combination) to produce offspring that consists of
a mixture of the parents genetic material. Under
this selection pressure, the individuals – also called
chromosomes or strings – strive for survival. After
some reproduction cycles, the population converges
against a single solution ξ?, which is in the best case
the globally optimal solution for the given problem.
EAs can be employed for searching the NC’s opti-
mal network function because a NC parameter set
can be mapped onto a real-valued string that pro-
vides an equivalent description of the network func-
tion. By searching for the fittest individual, the
EA searches for the optimal spacecraft trajectory.
Fig. 1 sketches the transformation of a chromosome
into a trajectory.

5. Neurocontroller Input and Output

Two fundamental questions concerning the utiliza-
tion of a NC for spacecraft steering are: (1) ”What
input should the NC get?” (or ”What should the NC
know to steer the spacecraft?”) and (2) ”What out-
put should the NC give?” (or ”What should the NC
do to steer the spacecraft?”). To be robust, a space-
craft steering strategy should be time-independent:
to determine the currently optimal spacecraft con-
trol u(t̄i), the spacecraft steering strategy should

4This fitness function is also analogous to the cost func-
tion in optimal control theory. To emphasize this fact, it will
be denoted by the same symbol, J .

�
�

�
�

chromosome/individual/string ξ
=

NC parameter set πππ

�
�

�
�

NC network function N
=

spacecraft steering strategy S

�� ��spacecraft control function u[t]

�� ��spacecraft trajectory xSC[t]

?

?

?

Fig. 1: Transformation of a chromosome into a trajec-
tory

have to know – at any time step t̄i – only the cur-
rent spacecraft state xSC(t̄i) and the current target
state xT(t̄i), hence S : X = {(xSC,xT)} 7→ {u}. If
a propulsion system other than a solar sail is em-
ployed, the current propellant mass mP(t̄i) might
be considered as an additional input, S : X =
{(xSC,xT,mP)} 7→ {u}. The number of potential
input sets, however, is still large because xSC and
xT may be given in coordinates of any reference
frame and in combinations of them. The difference
xT−xSC may be used as well, also in coordinates of
any reference frame and in combinations of them.
Two potential input sets are depicted in Figs. 2 and
3.

Fig. 2: Example for a NC that implements a solar sail
steering strategy

Each output neuron gives a value Yi ∈ (0, 1). The
number of potential output sets is also large because
there are many alternatives to define u, and to cal-
culate u from Y. The following approach gave good
results for the majority of problems: the NC pro-
vides a three-dimensional output vector d′′ ∈ (0, 1)3

from which a unit vector d in the desired thrust di-
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Fig. 3: Example for a NC that implements an SEP
spacecraft steering strategy

rection (called direction unit vector) is calculated
via

d′ = 2d′′ −

1
1
1

 ∈ (−1, 1)3 (1)

and

d = d′/|d′| (2)

For solar sails, u = d, hence S : {(xSC,xT)} 7→ {d}
(see Fig. 2). For SEP spacecraft, the output must
include the engine throttle χ, so that u = (d, χ),
hence S : {(xSC,xT,mP)} 7→ {d, χ} (see Fig. 3).

6. Evolutionary Neurocontroller Design

Fig. 4 shows how an ENC may be applied for low-
thrust trajectory optimization. To find the optimal
spacecraft trajectory, the ENC method runs in two
loops.

Fig. 4: Low-thrust trajectory optimization using ENC

Within the (inner) trajectory integration loop, a
NC steers the spacecraft according to its network

function Nπππj that is completely defined by the NC’s
parameter set πππj . The EA in the (outer) NC opti-
mization loop holds a population of NC parameter
sets, Ξ = {πππ1, . . . ,πππq}, and examines all of them for
their suitability to generate an optimal trajectory.
Within the trajectory optimization loop, the NC
takes the current spacecraft state xSC(t̄i∈{0,...,τ−1})
and that of the target xT(t̄i) as input, and maps
them onto some output. For SEP spacecraft, the
input includes the current propellant mass mP(t̄i)
and the output includes the current throttle χ(t̄i).
The first three output values are interpreted as the
components of d′′(t̄i), from which the direction unit
vector d(t̄i) is calculated via Eq. (1) and (2). Now,
the spacecraft control u(t̄i) is calculated from the
NC output. Then, xSC(t̄i) and u(t̄i) are inserted
into the equations of motion and (numerically) in-
tegrated over one time step ∆t̄ = t̄i+1 − t̄i to yield
xSC(t̄i+1). The new state is fed back into the NC.
The trajectory integration loop stops when the ac-
curacy of the trajectory is sufficient or when a given
time limit is reached. Then, back in the NC opti-
mization loop, the NC’s trajectory is rated by the
fitness function J(πππj). The fitness of πππj is crucial for
its probability to reproduce and to create offspring.
Under this selection pressure, the EA breeds more
and more suitable steering strategies that generate
better and better trajectories. Finally, the EA con-
verges against a single steering strategy, which gives
in the best case a near-globally optimal trajectory
x?

SC[t].

7. Additionally Encoded Problem Parameters

If an EA is already employed for the optimiza-
tion of the NC, it is manifest to use it also for
the co-optimization of additional problem parame-
ters. This can be done without major additional
effort. InTrance encodes the following parameters
additionally on the chromosome, making them an
explicit part of the optimization problem: (1) the
launch date, (2) the launch velocity vector (hyper-
bolic excess velocity vector), and (3) the initial pro-
pellant mass (except for solar sails).

RESULTS

Within this section, ENC (InTrance) is applied to
three interplanetary very-low-thrust trajectory op-
timization problems. The first problem is a near-
Earth asteroid rendezvous using a solar sail (with
a characteristic acceleration5 of ac = 0.14 mm/s2),
the second problem is a MESSENGER-like mis-
sion to Mercury but using a solar sail (with ac =

5maximum acceleration at Earth distance from the sun
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0.1 mm/s2), and the third problem is a Jupiter flyby
using a NEP spacecraft (with an acceleration – or
thrust to mass ratio – of 0.0357 mm/s2 < a(t) =
F/m(t) ≤ 0.05 mm/s2).

1. Near-Earth Asteroid Rendezvous Mission
Using a Solar Sail

Within this section, the convergence behavior of
ENC and the quality of the obtained solutions is
assessed for an exemplary rendezvous mission to a
near-Earth asteroid (1996FG3). For solar sailcraft
with ac = 0.14 mm/s2 (ideal6 50 m×50 m solar sail,
launch mass 148 kg, useful mass7 75 kg) a trajectory
was calculated in [12, 13] using a LTOM. This ref-
erence trajectory launches from Earth on 13Aug 06
and takes 1640 days to rendezvous 1996FG3, if the
solar sailcraft is inserted directly into an interplane-
tary trajectory with an hyperbolic excess energy of
C3 = 4km2/s2.

In the first experiment, InTrance was run five
times for the reference launch date but with zero
hyperbolic excess energy. The maximum transfer
time was set to Tmax = 1 800 days. For discretiza-
tion, this time interval was cut into τ = 360 finite
elements of equal length, so that the solar sail is
allowed to change its attitude once every 5 days.
The accuracy limit for the distance and the rela-
tive velocity at the target was set to ∆rf,max =
0.3 · 106 km and ∆vf,max = 0.1 km/s, respectively,
which is compatible with the reference trajectory.
The best found InTrance-trajectory (Fig. 5) is 135
days faster than the reference trajectory, while re-
ducing at the same time the C3-requirement from
4 km2/s2 to 0 km2/s2, thus permitting a reduc-
tion of the launcher requirements and eventually
of launch costs. The final distance to 1996FG3 is
∆rf = 0.200 · 106 km and the final relative velocity
is ∆vf = 0.065 km/s, both being better than the
required values.

In the second experiment, InTrance was used to
find the optimal launch date for the 1996FG3 ren-
dezvous problem (with C3 = 0 km2/s2). Fig. 6(a)
shows the solutions of five InTrance runs with dif-
ferent initial NC populations. The small vari-
ance of the five solutions gives evidence for a good
convergence behavior of ENC. Taking 1435 days
to rendezvous 1996FG3, the best found trajec-
tory (Fig. 6(b)) is 205 days faster than the refer-
ence trajectory (∆rf = 0.267 · 106 km and ∆vf =
0.089 km/s). The optimal launch date was found
to be 22Oct 05, 295 days earlier than the reference
launch date.

6where the incident radiation is reflected specularly
7spacecraft bus plus scientific payload

Fig. 5: Best InTrance-trajectory for the 1996FG3 ren-
dezvous (reference launch date)

(a) Trajectories for five different initial populations

(b) Best InTrance-trajectory

Fig. 6: 1996FG3 rendezvous (optimized launch date)

6
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The third experiment was to find out whether
a given C3 of 4 km2/s2 could be spent more effi-
ciently than done by the reference trajectory. The
optimal launch date for this problem was found to
be 12 Feb 06, a half year earlier than the reference
launch date. Fig. 7 shows the best found trajec-
tory. It takes only 944 days to rendezvous 1996FG3,
being 696 days faster than the reference trajectory
(∆rf = 0.272 · 106 km and ∆vf = 0.091 km/s). For
this calculation, the solar sail was allowed to change
its attitude once every 4 days (Tmax = 1000 days,
τ = 250).

Fig. 7: 1996FG3 rendezvous (optimized launch date):
Best InTrance-trajectory for C3 = 4km2/s2

2. Mercury Rendezvous Mission Using a Solar
Sail

Within this section, a rendezvous mission to Mer-
cury is assessed, comparable to the MESSENGER
mission (same spacecraft dry mass to Mercury, ap-
proximately same transfer time) but using a so-
lar sail instead of the chemical propulsion sys-
tem. MESSENGER makes an Earth-Venus-Venus-
Mercury-Mercury-Mercury gravity assist and five
deep space maneuvers to reach the planet within
about 6.6 years. Table 1 gives the most important
mission parameters [14].

InTrance was used to derive the performance re-
quirements for solar sails that would be able to
transport a spacecraft with the dry mass of MES-
SENGER to Mercury within approximately the
same transfer time. The maximum transfer time
was set to Tmax = 2600 days. For discretization,
this time interval was cut into τ = 520 finite ele-
ments of equal length, so that the solar sail is al-
lowed to change its attitude once every 5 days. The

Spacecraft dry mass 499.4 kg

Launch 02 Aug 04

Launch mass 1099.5 kg

Launcher Delta II, Model 7925-H

C3 16.8 km2/s2

Gravity assists Earth-(2×)Venus-

(3×)Mercury

Transfer Time 6.623 years

Mercury orbit insertion 18 Mar 11

Table 1: MESSENGER mission parameters [14]

accuracy limit for the distance and the relative ve-
locity at the target was set to ∆rf,max = 106 km
and ∆vf,max = 0.25 km/s, respectively. For a fair
comparison, MESSENGER’s C3 was also used for
the solar sail option. Fig. 8 shows a possible solar
sail trajectory for such a mission.

Fig. 8: Trajectory for MESSENGER-like mission to
Mercury using a solar sail

Fig. 8 demonstrates that a solar sail with a mod-
erate characteristic acceleration of 0.1 mm/s2 is able
to reach Mercury within approximately the MES-
SENGER transfer time, if it is injected with the
same hyperbolic excess energy of 16.8 km2/s2. In
contrast to the chemical mission scenario, no grav-
ity assist maneuver is necessary to achieve the re-
quired ∆V , which results in a more flexible mission
profile, with a practically permanent launch win-
dow [4]. Table 2 summarizes the significant mission
parameters.

The launch date for the solar sail mission was
not optimized but adopted from the actual MES-
SENGER mission. An optimization of the launch
date might yield a slightly shorter flight time. The
MESSENGER-trajectory, however, is also not glob-
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Solar sail payload 499.4 kg

Launch 02Aug 04

Characteristic acceleration 0.1mm/s2

C3 16.8 km2/s2

Gravity assists –

Transfer Time 5.914 years

Mercury orbit insertion 02 Sep 10

Table 2: Significant parameters for a MESSENGER-
like mission using a solar sail

ally optimal because the originally envisaged launch
window (10 Mar 04) was missed. A launch on
10 Mar 04 with C3 = 15.2 km2/s2 would have re-
sulted in a shorter flight time of 5.5 years, leading
to arrival at Mercury on 06 Apr 09 [15].

Assuming a quadratic solar sail, Fig. 9 gives the
sail side length s that is required to achieve ac =
0.1 mm/s2 for different sail assembly8 loadings σSA

and payload masses mPL, where the bold line relates
to MESSENGER’s dry mass of 500 kg.

Fig. 9: Solar sail technology requirements for
MESSENGER-like mission to Mercury using a solar sail

It can be seen that the required sail size increases
drastically for σSA ' 45 g/m2, and that it ap-
proaches infinity for σSA ≈ 83 g/m2 because the so-
lar sail would be to heavy to achieve ac = 0.1 mm/s2

even without any payload. Table 3 gives values for
five points on the 500 kg-curve.

It can be seen that the sail assembly loading must
only be / 45 g/m2 to yield a benefit in launch mass
with respect to the MESSENGER mission. For an
advanced solar sail with a low sail assembly loading
of about 10 g/m2 the launch mass is only about one
half of the actual MESSENGER launch mass.

8the sail film and the required structure for storing, de-
ploying and tensioning the sail

sail sail sail launch

assembly size assembly mass

loading mass

σSA

�
g/m2

�
s [m] mSA [kg] m [kg]

10 83 67 568

20 89 159 658

30 97 284 783

40 108 466 966

45 115 594 1093

Table 3: Trade-off between sail size s and sail assembly
loading σSA for ac = 0.1mm/s2

3. Jupiter Flyby Mission Using Nuclear Elec-
tric Propulsion

InTrance was originally developed for the optimiza-
tion of solar sail trajectories and later extended
to optimize also trajectories for electric spacecraft.
Within this section, it is applied for an exemplary
Jupiter flyby mission with a NEP spacecraft, to as-
sess the suitability of ENC also for the optimiza-
tion of electric very-low-thrust trajectories. Un-
like for the previous examples, the optimization ob-
jective was to minimize the used propellant mass
for a transfer within a maximum flight time of
Tmax = 10 000 days (27.4 years, τ = 2000). To
find the absolute minimum – independent of the ac-
tual constellation of Earth and Jupiter – no flyby at
Jupiter itself but only a crossing of Jupiter’s orbit
within a distance of less than 106 km was required,
and InTrance was allowed to vary the launch date
within a one year interval.

Without consideration of technical feasibility, a
launch mass of m = 14 t (for C3 = 0km2/s2)
was chosen, including a minimum dry mass of
mdry = 10 t. The propulsion system was assumed
to provide a thrust of F = 0.5 N, so that the
thrust to mass ratio is 0.0357 mN/kg < F/m(t) ≤
0.05 mN/kg. The specific impulse was assumed to
be that of a state-of-the-art ion thruster, Isp =
4500 s [16]. Fig. 10 shows a possible trajectory
for this mission. The velocity increment of this
trajectory is ∆V = 10.5 km/s, whereas a mini-
mum ∆V Hohmann-type trajectory to Jupiter9

would require ∆V = 8.6 km/s. Therefore, the
gravitational loss of the NEP system is only about
21%. Due to the high specific impulse of the elec-
tric thruster, only about 3 t of propellant are re-
quired. In contrast, a propellant mass of about 94 t
would be required for a Hohmann-type transfer of
a 11 t-spacecraft with a chemical propulsion system

9at perihelion
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Fig. 10: Jupiter flyby using NEP

(H2/LOX, Isp = 390 s [17]). Note also that the rela-
tive velocity at Jupiter is larger for the Hohmann-
type transfer (∆vf = 5.9 km/s) than for the very-
low-thrust transfer (∆vf = 5.1 km/s). This result
demonstrates that a NEP system allows very good
payload ratios for high-∆V missions, if the transfer
time plays a subordinate role, so that the gravita-
tional losses can be kept small.

SUMMARY AND CONCLUSIONS

Within this paper, low-thrust trajectory optimiza-
tion problems have been attacked from the per-
spective of artificial intelligence and machine learn-
ing. Inspired by natural archetypes, a novel
method for spacecraft trajectory optimization was
proposed. It fuses artificial neural networks and
evolutionary algorithms into evolutionary neuro-
controllers. Evolutionary neurocontrol was imple-
mented within a program termed InTrance, which
stands for Intelligent Trajectory optimization using
neurocontroller evolution. InTrance was applied to
find near-globally optimal trajectories for three ex-
emplary interplanetary very-low-thrust problems: a
near-Earth asteroid rendezvous using a solar sail, a
MESSENGER-like mission to Mercury but using a
solar sail, and a Jupiter flyby using a spacecraft
with a nuclear electric propulsion system. For the
near-Earth asteroid rendezvous problem, InTrance
found a trajectory that is considerably better than
a reference trajectory found by a human trajectory
optimization expert using a local trajectory opti-
mization method. It was already shown in previous
papers that evolutionary neurocontrollers are able
to find spacecraft steering strategies that generate
better trajectories, which are closer to the global

optimum because they explore the trajectory search
space more exhaustively than a human expert can
do by using traditional optimal control methods.
Here, it was shown that evolutionary neurocontrol
can also be applied successfully for very-low-thrust
problems, where it is very difficult to generate an
adequate initial guess for local trajectory optimiza-
tion methods. Evolutionary neurocontrol runs with-
out an initial guess and does not require the atten-
dance of an expert in astrodynamics and optimal
control theory. It may be also used to find the
optimal initial conditions for the mission. Being
problem-independent, the application field of evolu-
tionary neurocontrol may be extended to a variety
of other optimal control problems.
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