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A fictional asteroid mitigation problem posed by AIAA assumes that a 200m near-
Earth asteroid (NEA), detected on 04 July 2004 and designated as 2004WR, will impact
the Earth on 14 January 2015. Adopting this exemplary scenario, we show that solar sail
spacecraft that impact the asteroid with very high velocity are a realistic near-term option
for mitigating the impact threat from NEAs. The proposed mission requires several Kinetic
Energy Interceptor (KEI) solar sail spacecraft. Each sailcraft consists of a 160m × 160m,
168 kg solar sail and a 150 kg impactor. Because of their large ∆V-capability, solar sailcraft
with a characteristic acceleration of 0.5mm/s2 can achieve an orbit that is retrograde to
the target orbit within less than about 4.5 years. Prior to impacting 2004WR at its
perihelion of about 0.75AU, each impactor is to be separated from its solar sail. With
a relative impact velocity of about 81 km/s, each impactor will cause a conservatively
estimated ∆v of about 0.35 cm/s in the trajectory of the target asteroid, largely due to the
impulsive effect of material ejected from the newly formed crater. The deflection caused by
a single impactor will increase the Earth-miss distance by about 0.7 Earth radii. Several
sailcraft will therefore be required for consecutive impacts to increase the total Earth-
miss distance to a safe value. In this paper, we elaborate a potential mission scenario and
investigate trade-offs between different mission parameters, e.g. characteristic acceleration,
sail temperature limit, hyperbolic excess energy for interplanetary insertion, and optical
solar sail degradation.

I. Introduction

Near-Earth objects (NEOs) are asteroids and short-period comets with orbits that intersect or pass near
the orbit of Earth (perihelion rp ≤ 1.3 AU). About 794 NEAs with an absolute magnitude H ≤ 18 (diameter
d & 1 km) are currently (July 05) known,1 but the entire population contains perhaps more than 1 000 objects
of this size.2 All NEAs with an Earth Minimum Orbit Intersection Distance (MOID) ≤ 0.05 AU and H ≤ 22
(d & 200 m) are termed Potentially Hazardous Asteroids (PHAs). There are currently 663 known PHAs, 7
of them with H ≤ 15 (d & 5 km).1 They pose a significant hazard to human civilization and to life on Earth.
It is today widely accepted that NEO impacts have caused at least one mass extinction (65 million years ago
at the Cretaceous/Tertiary boundary), and they are suspected to have caused several global catastrophes
before.3 A 2 km object is capable of causing catastrophic alteration of the global ecosystem. Ocean impacts
of even smaller objects are of some concern because the destructive potential caused by the resulting tsunamis
may be above that from a land impact. Even objects that do not intersect Earth’s orbit may evolve into
Earth-crossers, since their orbits are chaotic, having a relatively short dynamical lifetime4,5 (∼ 107 years).
Although this paper is about a fictional scenario, one day it might become necessary to prevent a specific
object from impacting the Earth by nudging it out of its orbit. The probability of major impacts with severe
effects for humanity is low but not zero. This paper presents a realistic near-term solution to mitigate this
threat.
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II. Mission Scenario

A fictional asteroid mitigation problem was created by AIAA for the 2004/2005 AIAA Foundation Un-
dergraduate Team Space Design Competition: on 04 July 2004, NASA/JPL’s Near Earth Asteroid Tracking
(NEAT) camera at the Maui Space Surveillance Site discovered an Apollo asteroid with an estimated di-
ameter of 0.205 km designated 2004WR. This asteroid has been assigned a Torino Impact Scale rating of
9.0 on the basis of subsequent observations that indicate a 95% probability that 2004WR will impact the
Earth. The expected impact will occur in the Southern Hemisphere on 14 January 2015 causing catastrophic
damage throughout the Pacific region. The mission task is to design a space system that can rendezvous
with 2004WR in a timely manner, inspect it, and remove the hazard to Earth by changing its orbit and/or
destroying it. The classical orbital elements of 2004WR are given in the J2000 heliocentric ecliptic reference
frame as follows:

Epoch = 53200 TDB (14 July 2004)
a = 2.15374076 AU
e = 0.649820926
i = 11.6660258 deg
ω = 66.2021796 deg
Ω = 114.4749665 deg
M = 229.8987151 deg

It was further assumed that 2004WR is an S-class (stony-silicate) asteroid with a density of 2 720 kg/m3 and
that its estimated mass is 1.1× 1010 kg.

The proposed mission scenario employs a solar sail to deliver impactors to an orbit retrograde to the
asteroid’s orbit, from where they impact the target with very high kinetic energy. The use of solar sails to
achieve impacts from retrograde orbits was first proposed (and elaborated in a more general way) by McInnes
in Ref. 6. The proposed mission scenario comprises three phases (Fig. 1): (1) a spiralling-in phase, (2) an
orbit cranking phase to an orbit retrograde to the asteroid’s one, and (3) a final retrograde orbit phase prior
to impacting the target asteroid at its perihelion with maximum efficiency.
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Figure 1. Proposed mission scenario

A head-on collision yields an impact velocity of more than 80 km/s, which is much higher than the typical
impact velocity of about 10 km/s of conventional missions such as NASA’s Deep Impact mission7,8 or ESA’s
Don Quijote mission.9 The impactor is to be separated from the solar sail prior to impacting the target
asteroid, because of the extremely demanding terminal guidance and targeting requirements (the accuracy
of the impactor trajectory must be much better than 100 m at a relative velocity of more than 80 km/s). For
the present scenario, several KEI sailcraft will be required to increase the Earth-miss distance to a safe value.
For larger asteroids, the impactor may not have to be separated from the solar sail, but the complete solar
sail spacecraft could be designed to impact, thereby increasing the impacting mass and thus the resulting
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∆v. The critical technologies required for the proposed mission include: (1) deployment and control of a
160 m× 160 m solar sail, (2) development of a solar sail and a micro-spacecraft bus that is able to withstand
the extreme space environment at less than only 0.25 AU from the sun, (3) autonomous precision navigation,
terminal guidance and targeting, and (4) accurate impact-crater ejecta modeling and ∆v prediction. A
160 m × 160 m solar sail is currently not available. However, a 20 m × 20 m solar sail structure was already
deployed on ground in a simulated gravity-free environment at DLR in December 1999, a 40 m× 40 m solar
sail is being developed by NASA and industries for a possible flight validation experiment within 10 years,
and thus a 160 m × 160 m solar sail is expected to be available within about 20 years of a sharply pursued
technology development program.

III. Solar Sail Force Model

For the description of the solar radiation pressure (SRP) force exerted on a solar sail, it is convenient
to introduce two unit vectors. The first one is the sail normal vector n, which is perpendicular to the sail
surface and always directed away from the sun. In the orbit framea O, its direction, which describes the
sail attitude, is expressed by the pitch angle α and the clock angle δ (Fig. 2). The second unit vector is the
thrust unit vector m, which points along the direction of the SRP force. Its direction is described likewise
by the cone angle θ and the clock angle δ.
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Figure 2. Definition of the sail normal vector and the trust normal vector

At a distance r from the sun, the SRP is

P =
S0

c

(r0
r

)2

= 4.563
µN
m2

·
(r0
r

)2

(1)

where S0 = 1368W/m2 is the solar constant, c is the speed of light in vacuum, and r0 = 1AU.
In this paper, the standard non-perfectly reflecting SRP force modelb by Wright is employed, which

uses the set of optical coefficients P = {ρ, s, εf , εb, Bf , Bb} to parameterize the optical characteristics of the
sail film, where ρ is the reflection coefficient, s is the specular reflection factor, εf and εb are the emission
coefficients of the front and back side, respectively, and Bf and Bb are the non-Lambertian coefficients
of the front and back side, respectively, which describe the angular distribution of the emitted and the
diffusely reflected photons. According to Wright, the optical coefficients for a solar sail with a highly
reflective aluminum-coated front side and with a highly emissive chromium-coated back side (to keep the
sail temperature at a moderate limit) are PAl|Cr = {ρ = 0.88, s = 0.94, εf = 0.05, εb = 0.55, Bf = 0.79, Bb =
0.55}.10 It can be shownc that in a sail-fixed 2Dd coordinate frame S = {n, t} (see Fig. 3), the SRP force

aO = {er, et, eh} is an orthogonal right-handed polar coordinate frame. er points always along the sun-spacecraft line, eh is
the orbit plane normal (pointing along the spacecraft’s orbital angular momentum vector), and et completes the right-handed
coordinate system (er × et = eh).

bSee, e.g., Ref. 10 pp. 223-233, or Ref. 11 pp. 47-51, for a more detailed description of this model.
cSee, e.g., Ref. 11 pp. 47-49 for derivation.
dBecause of the symmetry, the third dimension is not relevant here.
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Figure 3. SRP force on a solar sail according to the non-perfectly reflecting force model

exerted on the solar sail has a normal component F⊥ (along n) and a tangential component F|| (along t)
with

F⊥ = F SRP · n = 2PA cosαψ⊥ (2a)
F|| = F SRP · t = −2PA cosαψ|| (2b)

where A is the sail area and

ψ⊥ = a1 cosα+ a2 (3a)
ψ|| = a3 sinα (3b)

with

a1 ,
1
2
(1 + sρ) a2 ,

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
a3 ,

1
2
(1− sρ) (4)

By defining Ψ , (ψ2
⊥ + ψ2

||)
1/2, the total SRP force vector may then be written as

F SRP = 2PA cosαΨm (5)

where Ψ depends only on the pitch angle α and the optical coefficients P of the sail film. The angle between
m and n, φ = arctan(ψ||/ψ⊥), is called the centerline angle. The cone angle, i.e. the angle between m and
the radial unit vector er, is then θ = α− φ = α− arctan(ψ||/ψ⊥).

The most commonly used solar sail performance parameter is the characteristic acceleration ac. It is
defined as the SRP acceleration acting on a solar sail that is oriented perpendicular to the sun line (n ≡ er)
at r0 (1AU). For the non-perfectly reflecting SRP force model, it is

ac =
2P0A

m
(a1 + a2) (6)

where P0 = P (r = r0) and m is the sailcraft mass.

IV. Simulation Model

Besides the gravitational forces of all celestial bodies and the SRP force, many disturbing forces influence
the motion of solar sails in space, as they are caused, e.g., by the solar wind, the finiteness of the solar disk,
the reflected light from close celestial bodies, and the aberration of solar radiation (Poynting-Robertson
effect). Furthermore, a real solar sail bends and wrinkles, depending on the actual solar sail design. Finally,
for a mission that is to target the center of mass of a 200 m-object with a relative velocity of more than
80 km/s, relativistic corrections may have to be applied for the final targeting phase. All these issues have
to be considered for high precision trajectory determination and control, as it is required for this mission.
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For mission feasibility analysis, however, as it is done within this paper, the following simplifications can be
made:

1. The solar sail is a flat plate.

2. The solar sail is moving under the sole influence of solar gravitation and radiation.

3. The sun is a point mass and a point light source.

4. The solar sail attitude can be changed instantaneously.

Let the reference frame I = {ex, ey, ez} be a heliocentric inertial right-handed cartesian coordinate frame.
The equations of motion for a solar sail in the I-frame are:

ṙ = v, v̇ = − µ

r3
r +

F SRP

m
+ ad (7)

where r = (rx, ry, rz) is the solar sail position, v = (vx, vy, vz) is the solar sail velocity, µ is the sun’s
gravitational parameter, and ad is the disturbing acceleration, which is – according to the simplifications
made above – neglected within this paper.

V. Local and Global Trajectory Optimization Methods

A. Local Steering Laws

Local steering laws (LSLs) give the locally optimal thrust direction to change some specific osculating orbital
element of the spacecraft with a locally maximum rate. To obtain LSLs, Lagrange’s planetary equations in
Gauss’ form may be used, which describe the rate of change of a body’s osculating orbital elements due to
some (propulsive and/or disturbing) acceleration. This can best be done in the orbit frame O = {er, et, eh}.
According to Ref. 12 the equations for the semi-major axis a and the inclination i can be written as

da

dt
=

2a2

h

(
e sin far +

p

r
at

)
(8a)

di

dt
=
r cos(ω + f)

h
ah (8b)

where ar, at, and ah are the acceleration components along the O-frame unit vectors, h = |h| is the orbital
angular momentum per spacecraft unit mass, and p is the semilatus rectum of the orbit. Because Eqs. (8a)
and (8b) can be written as

da

dt
=

 2a2

h e sin f
2a2

h
p
r

0

 ·

ar

at

ah

 = ka · a (9a)

di

dt
=

 0
0

r cos(ω+f)
h

 ·

ar

at

ah

 = ki · a (9b)

it is clear that to decrease the semi-major axis with a maximum rate, the thrust vector has to be along the
direction −ka (local steering law La−). To increase the inclination with a maximum rate, the thrust vector
has to be along the direction ki (Li+).

B. Evolutionary Neurocontrol: A Global Trajectory Optimization Method

Within this paper, evolutionary neurocontrol (ENC) is used to calculate near-globally optimal trajectories.
This method is based on a combination of artificial neural networks (ANNs) with evolutionary algorithms
(EAs). ENC attacks low-thrust trajectory optimization problems from the perspective of artificial intelligence
and machine learning. Here, it can only be sketched how this method is used to search optimal solar sail
trajectories. The reader who is interested in the details of the method is referred to Refs. 13, 14, or 15.
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The problem of searching an optimal solar sail trajectory x?[t] = (r?[t], ṙ?[t])e is equivalent to the problem
of searching an optimal sail normal vector history n?[t], as it is defined by the optimal time history of the
so-called direction unit vector d?[t], which points along the optimal thrust direction. Within the context
of machine learning, a trajectory is regarded as the result of a sail steering strategy S that maps the
problem relevant variables (the solar sail state x and the target state xT) onto the direction unit vector,
S : {x,xT} ⊂ R12 7→ {d} ⊂ R3, from which n is calculated. This way, the problem of searching x?[t] is
equivalent to the problem of searching (or learning) the optimal sail steering strategy S?. An ANN may
be used as a so-called neurocontroller (NC) to implement solar sail steering strategies. It can be regarded
as a parameterized function Nπ (the network function) that is – for a fixed network topology – completely
defined by the internal parameter set π of the ANN. Therefore, each π defines a sail steering strategy Sπ.
The problem of searching x?[t] is therefore equivalent to the problem of searching the optimal NC parameter
set π?. EAs that work on a population of strings can be used for finding π? because π can be mapped
onto a string ξ (also called chromosome or individual). The trajectory optimization problem is solved when
the optimal chromosome ξ? is found. Fig. 4 sketches the subsequent transformation of a chromosome into
a solar sail trajectory. An evolutionary neurocontroller (ENC) is a NC that employs an EA for learning (or
breeding) π?. ENC was implemented within a low-thrust trajectory optimization program called InTrance,
which stands for Intelligent Trajectory optimization using neurocontroller evolution. InTrance is a smart
global trajectory optimization method that requires only the target body/state and intervals for the initial
conditions (e.g., launch date, hyperbolic excess velocity, etc.) as input to find a near-globally optimal
trajectory for the specified problem. It works without an initial guess and does not require the attendance
of a trajectory optimization expert.

�
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�
�

chromosome/individual/string ξ

=
NC parameter set π

�
�

�
�

NC network function N

=
sail steering strategy S

�� ��sail normal vector history n[t]

�� ��solar sail trajectory x[t]

?

?

?

Figure 4. Transformation of a chromosome into a solar sail trajectory

VI. Results

A. Optimization of the Baseline Mission Scenario

1. Overall Description

The baseline mission scenario foresees a non-perfectly reflecting solar sail with a characteristic acceleration
of ac = 0.5 mm/s2, a sail temperature limit of Tlim = 240◦C, and interplanetary insertion at Earth with zero
hyperbolic excess energy, C3 = 0 km2/s2. Generally, orbits with i < 90 deg are termed prograde orbits and
orbits with i > 90 deg are termed retrograde orbits. It was first found by Wright16,17 and further examined
by Sauer18 that the best way to attain a retrograde orbit with a solar sail is to first spiral inwards to a solar

eThe symbol “[t]” denotes the time history of the preceding variable and the symbol “?” denotes its optimal value.
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Figure 5. Mission timeline

distance that is given by the temperature limits Tlim of the solar sail and the spacecraftf, and then to use
the large available SRP to crank the orbit. During the orbit cranking phase, the local steering law Li+ is
applied until the desired inclination is reached. To simplify the terminology within this paper, we speak of
a retrograde orbit, when the orbital angular momentum vector of the spacecraft h and the target hT are
anti-parallel, i.e. ∠(h,−hT) = 0 deg. Using local steering laws, the strategy to attain such a retrograde orbit
divides the trajectory into two well-defined phases

1a: Spiralling inwards until the optimum solar distance for cranking the orbit is reached using local steering
law La− (the inclination stays constant during phase 1a)

1b: Cranking the orbit until the orbit is retrograde using local steering law Li+
g (the semi-major axis stays

constant during phase 1b)

Phase 1a and 1b can be regarded as a single phase, phase 1 (later, using InTrance, phase 1 will be optimized
in one go). Phase 1 has to be followed by a phase 2, for which no simple LSL exists. The goal of phase 2 is
to impact the target head-on with maximum relative velocity. The time that is spent for the different phases
is then ∆t = ∆t1 +∆t2 with ∆t1 = ∆t1a +∆t1b (∆t1a = t1a− t0, ∆t1b = t1b− t1a, and ∆t2 = t2− t1b) with
the constraint that the launch date is assumed fixed within this paper (see Fig. 5). As we will see later from
the InTrance-solutions, using local steering laws and patching the solutions of phase 1a, 1b, and 2 together
yields a suboptimal solution because a globally optimal trajectory has a smooth transition between the three
phases, changing the inclination also slightly during phase 1a and 2, whenever the sailcraft is close to the
nodes. Therefore, we define t1b, the end of phase 1, as follows: let ∆ix

T
= |ix

T
− i| be the difference between

the inclination i of the spacecraft and the inclination of the retrograde target orbit, ix
T

= |180 deg−iT|. Then
t = t1b, when ∆ix

T
= 10deg. This means that at the end of phase 1 the sailcraft orbit does not have to be

exactly retrograde because this can be accounted for within phase 2.

2. Determination of the Optimal Orbit Cranking Radius

If solar sail degradation is not considered, the acceleration capability of the solar sail increases ∝ 1/r2 when
going closer to the sun. The minimum solar distance, however, is constrained by the temperature limit of
the sail film Tlim and the spacecraft. Here, however, only the temperature limit of the sail film is considered.
The equilibrium temperature of the sail film ish

T =
[
S0

σ

1− ρ

εf + εb

(r0
r

)2

cosα
]1/4

(10)

where σ = 5.67 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. Thus, the sail temperature does not
only depend on the solar distance, but also on the sail attitude, T = T (r, α) (and of course on the set of
optical parameters P that is assumed as fixed within this paper). It was demonstrated in Ref. 19 that faster
trajectories can be obtained for a given sail temperature limit Tlim, if not a minimum solar distance rlim but
Tlim is used directly as a constraint. This can be realized by constraining the pitch angle α (that is also the
light incidence angle) in a way that it cannot become smaller than the critical pitch angle, where Tlim would
be exceeded, i.e. α > αlim(r, Tlim).

fHowever, although the sail temperature depends not only on the solar distance but also on the pitch angle, as it will be
seen later, Sauer used a minimal solar distance rlim instead of a temperature limit Tlim.

gThereby, it might be necessary to change the ascending node of the orbit, so that the inclination change is ≤ 180 deg.
hSee, e.g., Ref. 11 pp. 48-49 for derivation.
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Figure 6. Baseline Mission Scenario: Dependence of inclination change rate on orbit cranking radius (circular
orbit)

Although orbit cranking is most effective for a circular orbit, it is also important to consider elliptic orbits.
Therefore, we describe the optimal orbit cranking behavior rather by an orbit cranking semi-major axis acr

instead of an orbit cranking radius. Using the direct sail temperature constraint, acr defines the time ∆t1b
that is required to make the orbit retrograde. ∆t1b is influenced by two adverse effects, leading to an optimal
orbit cranking semi-major axis acr,opt(Tlim) where the inclination change rate ∆i/∆t is maximal an thus ∆t1b
is minimal, as it can be seen from Fig. 6. For acr > acr,opt, the inclination change takes longer than for acr,opt

because of the lower SRP. For acr < acr,opt, the inclination change also takes longer than for acr,opt because of
the (inefficiently) large critical pitch angle αlim that is required to keep T < Tlim. Thus ∆t1b = ∆t1b(Tlim).
It can seen from Fig. 6 that acr,opt(Tlim = 240◦C) = 0.22 AU where ∆i/∆t = 0.1642 deg/day.

3. Calculation of Phase 1 Using Local Steering Laws

Knowing now that the optimal semi-major axis for orbit cranking is 0.22 AU, we can calculate an estimate
for ∆t1 using the local steering laws La− (phase 1a, ⇒ ∆t1a) and Li+ (phase 1b, ⇒ ∆t1b). The trajectories
for both phases are shown in Figs. 7(a) and 7(b). Fig. 7(c) shows a very sharp transition between phase
1a and 1b. The time that is required for spiralling to acr,opt is ∆t1a = 635.5 days. If the final spacecraft
state of phase 1a is taken as the initial spacecraft state for phase 1b, the time that is required for cranking
the orbit to ∆ix

T
= 10deg is ∆t1b = 973.5 days. Therefore, the duration of phase 1 is ∆t1 = 1609 days.

Note that this calculation did not include the alignment of the ascending node of the sailcraft Ω with the
ascending node of the retrograde asteroid orbit Ωx

T
, so that ∆Ωx

T
(t1b) = |Ωx

T
(t1b)−Ω(t1b)| = 56.7 deg. This

misalignment, however, could be removed by optimizing the launch date t0. Note that, when La− is applied,
the trajectory has generally some eccentricity at a = acr,opt. If we do not use the final spacecraft state of
phase 1a as the initial state for phase 1b, but assume a circular orbit to get the lower bound for what can
be achieved with local steering laws, we get ∆t1b = 960 days for ∆ix

T
= 10 deg, which is only 13.5 days less

(∆t1 = 1595.5 days).

4. Optimization of Phase 1 Using InTrance

Using InTrance, phase 1 is optimized in one go. InTrance yields ∆t1 = 1572 days, which is 37 days (2.4%)
faster than the LSL solution. Fig. 8(c) now shows a very smooth transition between phase 1a and 1b. This
result proves that a global optimal solution changes the inclination also during phase 1a, whenever the solar
sail is close to the nodes. Due to the poor local search behavior of InTrance, few “spikes” remain in the control
angles (Fig. 8(d)), so that further fine-tuning of the solution might yield a marginally shorter trajectory.
The orientation of the final orbit is well aligned with the retrograde asteroid orbit, ∆Ωx

T
(t1b) = 1.3 deg.
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Figure 7. Baseline Mission Scenario: phase 1, local steering law solution

5. Optimization of Phase 1 Using a Combination of InTrance and Li+ (InTrance&Li+)

Looking at Fig. 8(c), one sees that acr is not constant during phase 1b. Additional to the “spikes” in the
control angles (Fig. 8(d)), this indicates also that the InTrance solution is not locally optimal. Therefore,
we have applied a combination of InTrance with the local steering law Li+ , using InTrance until a = acr,opt

and Li+ from this point on. The results are shown in Fig. 9. This strategy yields ∆t1 = 1564 days, showing
that the InTrance-solution for phase 1b was suboptimal, however, only very slightly (8 days, 0.5%). This
result proves that the InTrance-solution is close to the global optimum, but local fine-tuning can slightly
improve the solution. The orientation of the final orbit is well aligned with the retrograde asteroid orbit,
∆Ωx

T
(t1b) = 1.5 deg.
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Figure 8. Baseline Mission Scenario: phase 1, InTrance-solution

6. Optimization of Phase 2

The simplest approach to deflect a NEA is to impact it with a massive projectile at a high relative velocity. A
successful asteroid deflection mission, however, will require accurate modeling and prediction of the velocity
change caused by the impactor. The effective impulse imparted to the asteroid will be the sum of the pure
kinetic impulse (linear momentum) of the impactor plus the impulse due to the “thrust” of material being
ejected from the impact crater. The last term can be very significant (even dominant), but its magnitude
depends strongly upon the density and yield strength of the material of which the asteroid is composed, as
well as the mass and relative velocity of the impactor. For example, a head-on collision (at a relative velocity
of vimp = 80 km/s) of a 150 kg impactor on a 200 m S-class asteroid (with a density of 2 720 kg/m3) yields
a pure kinetic-impact ∆v of approx. 0.1 cm/s. If the asteroid is composed of hard rock, then the modeling
of crater ejecta impulse from previous studies would predict an additional ∆v of 0.2 cm/s, which is double
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Figure 9. Baseline Mission Scenario: phase 1, combination of InTrance-solution and local steering law

the pure kinetic-impact ∆v.20,21 If the asteroid were composed of soft rock, however, the previous studies
would instead predict an additional ∆v of 0.6 cm/s, which is about six times the pure kinetic-impact ∆v. An
accurate modeling and prediction of the ejecta impulse for various asteroid compositions is therefore a critical
part of kinetic-impact approaches. A practical concern of any kinetic-impact approach is the risk that the
impact could result in the fragmentation of the asteroid, which could substantially increase the damage upon
Earth impact.22 The energy required to fragment an asteroid depends critically upon its composition and
structure. For example, for a 200 m asteroid composed largely of ice, the disruption energy is approximately
3.4 × 1010 J. Because the kinetic energy of a 150 kg impactor at a relative velocity of 80 km/s would be
4.8 × 1011 J, the ice asteroid would likely fragment.23 If the asteroid was composed largely of silicates, it
would have a disruption energy of approximately 2.3×1012 J, about five times larger than the kinetic energy
delivered by the impactor; this asteroid would likely stay intact.23 Therefore, further studies are needed
to optimize impactor size, relative impact velocity, and the total number of impactors as functions of the
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asteroid’s size and composition, to ensure that the impact does not cause fragmentation.
For the following calculations, it is assumed that a head-on collision with a relative velocity vimp = 70 km/s

at the asteroids perihelion leads to a change of the asteroids orbital velocity of ∆vNEA,imp = 0.3 cm/s (see
Ref. 23). Thus, assuming that ∆vNEA,imp varies proportional to vimp, we can assume for simplicity (without
further impact modeling) a collision efficiency factor of ∆vNEA,imp

vimp
= 4.3× 10−8. Therefore, the goal of phase

2 is to maximize the head-on impact velocity. The optimization objective used for InTrance was: maximize
v · (−vNEA)! Fig. 10 shows the resulting trajectory and the orbital elements that define the shape and
inclination of the orbit.
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Figure 10. Baseline Mission Scenario: phase 2, InTrance-solution

InTrance achieves an impact velocity of 81.4 km/s. This yields ∆vNEA,imp = 0.349 cm/s. Numerical
integration of the asteroids orbit after the impact, including all planetary disturbances, yields a deflection
distance of ∆rdefl = 4656 km (0.73 Earth radii) at 14 Jan 2015, the date of Earth impact. It is clear that
the impact velocity depends only on the characteristic acceleration of the sailcraft and the time ∆t2 that is
available after phase 1 to maximize the impact velocity, thus vimp = vimp(ac,∆t2). Having evaluated several
post-impact calculations, the deflection distance (for this scenario!) can be approximated with an error of
less than 0.1% (with the assumptions of the impact model) by

∆̃rdefl ≈ 57.16 · ṽimp (11)

where the tilde denotes dimensionless variables, ∆̃rdefl = ∆rdefl
1 km and ṽimp = vimp

1 km/s .

B. Variation of the Hyperbolic Excess Energy for Interplanetary Insertion

In this section, the influence of the hyperbolic excess energyi C3 on the mission performance is investigated.
To find out how C3 influences the time that is available for phase 2 to gain orbital energy, we have used
InTrance to calculate ∆t1(C3). This gives then ∆t2(C3) = ∆t−∆t1(C3). The results are shown in Fig. 11(a).
As expected, the time that is available for phase 2 increases with C3. For 0 km2/s2 ≤ C3 ≤ 100 km2/s2, it
can be approximated with an error of less than 10% by

∆̃t2 = 626 + 68.5 · C̃0.4
3 (12)

where ∆̃t2 = ∆t2
1 day and C̃3 = C3

1 km2/s2 . We have also investigated how the time that is available for phase 2
influences the impact velocity. For this purpose, we have taken the spacecraft state of the reference trajectory
at t1b as initial state for phase 2, but set the date back by 50, 100, 150, and 200 days, so that this time is

iC3 depends mainly on the size of the launch vehicle.
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Figure 11. Variation of C3 (ac = 0.5mm/s2, Tlim = 240◦C)

additionally available for the sail to gain orbital energy for the impact. The results are shown in Fig. 11(b).
As expected, the impact velocity increases with the duration of phase 2. For 600 days . ∆t2 . 850 days, it
can be approximated with an error of less than 0.1% by

ṽimp ≈ 73.017 + 0.0131 · ∆̃t2 (13)

Combining Eqs. (12) and (13), we can approximate the impact velocity for 0 km2/s2 . C3 . 25 km2/s2 by

ṽimp ≈ 81.218 + 0.897 · C̃0.4
3 (14)

C. Variation of the Sail Temperature Limit

In this section, the influence of the solar sail temperature limit Tlim on the mission performance is investigated.
Fig. 12 shows for a circular orbit (∆i/∆t)(acr) for different solar sail temperature limits. For 200◦C ≤ Tlim ≤
260◦C, the optimal orbit cranking semi-major axis can be approximated with an error of less than 1% by

ãcr,opt ≈ 30 · T̃−0.897
lim (15)

where ãcr,opt = acr,opt
1 AU and T̃lim = Tlim

1◦C . The maximum inclination change rate can be approximated with an
error of less than 1% by

(∆̃i/∆t)max ≈ 9.26× 10−4 · T̃lim − 5.68× 10−2 (16)

where (∆̃i/∆t)max = (∆i/∆t)max
1 deg/day .

We used InTrance to optimize phase 1 for different solar sail temperature limits (200◦C ≤ Tlim ≤ 260◦C).
The results are shown in Table 1 and Fig. 13. Fig. 13(b) shows that InTrance matches the optimal orbit
cranking semi-major axes shown in Fig. 12 very closely. For 200◦C ≤ Tlim ≤ 260◦C, the time required for
phase 1 can be approximated with an error of less than 1% by

∆̃t1 ≈ 8.05× 104 · T̃−0.718
lim (17)

so that the time that is available for phase 2 can be approximated by

∆̃t2 ≈ 2190− 8.05× 104 · T̃−0.718
lim (18)

Using then Eq. (13), the impact velocity can be approximated (with an error of less than 0.25%) by

ṽimp ≈ 101.7− 1055 · T̃−0.718
lim (19)
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Table 1. Variation of Tlim (ac = 0.5mm/s2, C3 = 0km2/s2, InTrance&Li+)

Tlim acr,opt (∆i/∆t)max ∆t1 ∆t2 ṽimp ∆̃rdefl

[◦C] [AU] [deg/day]
200 0.260 0.1291 1806 384 78.0 4460
220 0.236 0.1461 1661 529 79.9 4570
240 0.220 0.1648 1564 626 81.2 4640
260 0.205 0.1838 1494 696 82.1 4690
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Figure 13. Phase 1, optimized with InTrance: variation of Tlim (ac = 0.5mm/s2, C3 = 0 km2/s2)

D. Variation of the Characteristic Acceleration

In this section, the influence of the characteristic acceleration ac on the mission performance is investi-
gated. We used InTrance to optimize phase 1 for different characteristic accelerations (0.5 mm/s2 ≤ ac ≤
0.6 mm/s2). The results are shown in Table 2 and Fig. 14. Fig. 14(b) shows that the optimal orbit cranking
semi-major axis is independent of ac. For 0.5 mm/s2 ≤ ac ≤ 0.6 mm/s2, the maximum inclination change
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Table 2. Variation of ac (Tlim = 240◦C, C3 = 0 km2/s2, InTrance&Li+)

ac (∆i/∆t)max ∆t1 ∆t2 vimp ∆rdefl[
mm/s2

]
[deg/day] [days] [days] [km/s] [km]

0.5 0.1642 1564 626 81.4 4656
0.55 0.1803 1425 765 83.8 4791
0.6 0.1963 1323 867 85.0 4857
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Figure 14. Phase 1, optimized with InTrance: variation of ac (Tlim = 240◦C, C3 = 0km2/s2)

rate can be approximated with an error of less than 0.1% by

(∆̃i/∆t)max ≈ 0.3238 · ã0.9794
c (20)

where ãc = ac

1 mm/s2 . The duration of phase 1 can then be approximated with an error of less than 0.4% by

∆̃t1 ≈ 297.1 · ã−0.8257
c +

170
0.3238 · ã0.9794

c

≈ 297.1 · ã−0.8257
c + 525 · ã−0.9794

c (21)

The duration of phase 2 is then approximately

∆̃t2 ≈ 2190− 297.1 · ã−0.8257
c − 525 · ã−0.9794

c (22)

E. Solar Sail Degradation

To investigate the effects of optical degradation of the sail film, as it is expected in the extreme space
environment close to the sun, we apply here the parametric model developed in Refs. 24 and 25. In this
parametric model the optical parameters p are assumed to depend on the cumulated solar radiation dose
(SRD) Σ(t) on the sail:

p(t)
p0

=


(
1 + de−λΣ(t)

)
/ (1 + d) for p ∈ {ρ, s}

1 + d
(
1− e−λΣ(t)

)
for p = εf

1 for p ∈ {εb, Bf , Bb}

(23)

The (dimensionless) SRD is

Σ(t) =
Σ̃(t)
Σ̃0

=
(
r20

∫ t

t0

cosα
r2

dt′
)/

1 yr (24)
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with Σ̃0 , S0 · 1 yr = 1368 W/m2 · 1 yr = 15.768 TJ/m2 being the annual SRD on a surface perpendicular to
the sun at 1AU. The degradation constant λ is related to the “half life solar radiation dose” Σ̂ (Σ = Σ̂ ⇒
p = p0+p∞

2 ) via

λ =
ln 2
Σ̂

(25)

The degradation factor d defines the end-of-life values p∞ of the optical parameters:

ρ∞ =
ρ0

1 + d
s∞ =

s0
1 + d

εf∞ = (1 + d)εf0

εb∞ = εb0 Bf∞ = Bf0 Bb∞ = Bb0

Table 3 and Fig. 15 show the results for different degradation factors 0 ≤ d ≤ 0.2, assuming a half life SRD
of 25S0 ·1 yr = 394 TJ/m2. It can be seen from Table 3 that for d > 0.05 it is not possible to meet the
mission objective. The time that is available for phase 2 is to short to make an impact with the target.
Fig. 15(b) shows that for larger degradation factors it is favorable to make the orbit cranking further away
from the sun than it would be optimal without degradation. The main degradation effect can be seen from
Fig. 15(a), which shows that ∆i/∆t becomes smaller with increasing SRD. Because the underestimation of
optical degradation could be a show-stopper for this mission, and because the real degradation behavior of
solar sails in the space environment is to considerable degree indefinite, extensive ground and in-space tests
are required prior to this mission.

Table 3. Variation of the optical degradation factor (InTrance)

d ∆t1 ∆t2 vimp ∆rdefl

[days] [days] [km/s] [km]
0.0 1572 618 81.4 4640
0.05 1705 485 79.4 4540
0.1 1839 351 – –
0.2 2074 116 – –
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Figure 15. Phase 1, optimized with InTrance: different optical degradation factors (ac = 0.5mm/s2, Tlim = 240◦C,
C3 = 0km2/s2)
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VII. Summary and Conclusions

We have shown that solar sails are a realistic option to deflect a fictional 200 m diameter asteroid with a
kinetic impact. The required technology for such a mission, however, is not yet state-of-the-art, but would
have to be developed in a sharply pursued technological program within the next 20 years. In our baseline
scenario, we have used a non-perfectly reflecting solar sail with a maximum acceleration of 0.5 mm/s2 at
1 AU to transport a separable 150 kg impactor to the target within 6 years. A sail temperature limit of 240◦C
was assumed and zero hyperbolic excess energy for interplanetary insertion. We have shown that such a
sailcraft is able to impact the asteroid with a relative head-on velocity of 81.4 km/s at its perihelion, leading
to an estimated deflection of more than a half Earth radius. Thereby, we have found that a global trajectory
optimization technique yields larger impact velocities than they can be achieved with local steering laws.
The impact velocity can be increased by a considerable amount either by using a lighter solar sail, or by using
a more temperature-resistant sail, or by inserting the sailcraft with a larger hyperbolic excess velocity at
Earth. We have also found that the mission performance might be seriously affected by optical degradation
of the sail surface, as it is expected in the extreme space environment close to the sun. However, because
the real degradation behavior of solar sails in the space environment is to considerable degree indefinite,
ground and in-space tests are required prior to this mission. Other problems that have to be considered for
the design of this mission are the extreme requirements for the terminal guidance prior to impact (accuracy
much better than 100m at a relative velocity of more than 80 km/s) and the thermal control that has to
withstand very close solar distances (0.2− 0.25 AU).
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