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Abstract

Innovative solar system exploration missions require ever larger velocity increments and thus
ever more demanding propulsion capabilities. Using for those high-energy missions the state-
of-the-art technique of chemical propulsion in combination with (eventually multiple) gravity
assist maneuvers results in long, complicated, and inflexible mission profiles. Low-thrust
propulsions systems can significantly enhance or even enable those high-energy missions,
since they utilize the propellant more efficiently – like electric propulsion systems – or do
not consume any propellant at all – like solar sails, that utilize solely the freely available
solar radiation pressure for propulsion. Consequently, low-thrust propulsion systems permit
significantly larger velocity increments and/or larger payload ratios and/or smaller launch
vehicles, while at the same time allowing direct trajectories with reduced flight times, simpler
mission profiles, and extended launch windows.

One of the most important tasks during the feasibility analysis and the preliminary design of a
deep space mission is the design and the optimization of the interplanetary transfer trajectory.
Searching trajectories for low-thrust spacecraft, that are optimal with respect to transfer time
or propellant consumption, is usually a difficult and time-consuming task that involves a lot
of experience and expert knowledge, since the convergence behavior of traditional optimizers,
that are based on numerical optimal control methods, depends strongly on an adequate initial
guess, which is often hard to find. Even if the optimizer converges to an ”optimal” trajectory,
this trajectory is typically close to the initial guess that is rarely close to the (unknown) global
optimum.

Within this work, trajectory optimization problems are attacked from the perspective of ar-
tificial intelligence and machine learning, which is quite different from that of optimal control
theory. Inspired by natural archetypes, a smart method for spacecraft trajectory optimization
– that fuses artificial neural networks and evolutionary algorithms to evolutionary neurocon-
trollers – is developed. Before the novel method is employed for the trajectory optimization
and mission analysis of some exemplary deep space missions, its convergence behavior is evalu-
ated and the quality of the obtained solutions is assessed. It is demonstrated, by re-calculating
trajectories for several existing low-thrust problems, that this novel method can be applied
successfully for near-globally optimal spacecraft steering. Since evolutionary neurocontrollers
explore the trajectory search space more exhaustively than a human expert can do by using
traditional optimal control methods, they are able to find spacecraft steering strategies that
generate better trajectories, which are closer to the global optimum. Using evolutionary neu-
rocontrollers, low-thrust trajectories can be optimized without an initial guess and without
the permanent attendance of an expert in astrodynamics and optimal control theory. Their
field of application may be extended to a variety of optimal control problems.



Zusammenfassung

Innovative Missionen für die Erkundung des Sonnensystems erfordern immer höhere Geschwin-
digkeitsänderungen und somit immer bessere Antriebssysteme. Für solch hochenergetische
Missionen führt die gegenwärtig übliche Methode – Verwendung chemischer Antriebe in
Verbindung mit (eventuell mehrfachen) Gravity-Assist-Manövern – zu langen Missionsdauern
und zu komplizierten unflexiblen Missionsprofilen. Durch Niedrigschubantriebssysteme kann
die Durchführung von hochenergetischen Missionen erleichtert oder teilweise sogar erst ermög-
licht werden, da diese Antriebssysteme den Treibstoff effizienter nutzen – wie z.B. elektrische
Antriebssysteme – oder sogar überhaupt keinen Treibstoff benötigen – wie Sonnensegler, die
den ,,kostenlosen” solaren Strahlungsdruck als Antriebsquelle nutzen. Infolgedessen erlauben
Niedrigschubsysteme höhere Geschwindigkeitsänderungen und/oder größere Nutzlastverhält-
nisse und/oder leichtere Trägerraketen. Gleichzeitig erlauben sie schnelle Direktbahnen und
einfache Missionsprofile mit ausgedehnten Startfenstern.

Eine der wichtigsten Aufgaben während der Missionsdurchführbarkeitsanalyse und des Grob-
entwurfs einer interplanetaren Mission ist der Entwurf und die Optimierung der Transfer-
bahn(en). Das Konvergenzverhalten von traditionellen Niedrigschub-Bahnoptimierungsver-
fahren, die auf numerischen Methoden der optimalen Steuerung basieren, hängt entscheidend
von einer guten Startschätzung der Lösung ab, wie sie oft schwer zu finden ist. Selbst wenn
der Optimierer gegen eine ,,optimale” Bahn konvergiert, so befindet sich diese meist nahe an
der Startschätzung, welche sich wiederum selten nahe am (unbekannten) globalen Optimum
befindet. Dies macht die Suche nach zeit- oder treibstoffoptimalen Niedrigschubbahnen für
gewöhnlich zu einer schwierigen und zeitraubenden Arbeit, die viel Erfahrung und Experten-
wissen erfordert.

Im Rahmen dieser Arbeit werden Bahnoptimierungsprobleme anders angepackt: aus dem
Blickwinkel der Künstlichen Intelligenz und des Maschinenlernens. Inspiriert von natürlichen
Vorbildern, wird eine ,,intelligente” Methode zur Bahnoptimierung von Raumfahrzeugen ent-
wickelt, welche Neuronale Netze und Evolutionäre Algorithmen zu Evolutionären Neuronalen
Reglern verbindet. Bevor diese neuartige Methode zur Bahnoptimierung und Missionsana-
lyse einiger beispielhafter interplanetarer Missionen verwendet wird, wird sie hinsichtlich
ihres Konvergenzverhaltens und der Güte der Lösungen geprüft und bewertet. Anhand der
Neuberechnung von Bahnen für Niedrigschubprobleme, für die bereits Bahnen in der Liter-
atur vorhanden sind, wird gezeigt, dass die neue Methode erfolgreich für eine beinahe-global
optimale Steuerung von Raumfahrzeugen eingesetzt werden kann. Da Evolutionäre Neu-
ronale Regler den Lösungsraum möglicher Bahnen erschöpfender durchsuchen als dies ein
menschlicher Experte unter Verwendung traditioneller Methoden der optimalen Steuerung
kann, finden sie Steuerstrategien, die bessere – näher am globalen Optimum liegende – Bah-
nen generieren. Mit Evolutionären Neuronalen Reglern können Niedrigschubbahnen ohne
Anfangsschätzung und ohne die ständige Anwesenheit eines Astrodynamik- und Bahnopti-
mierungsexperten optimiert werden. Ihr Anwendungsbereich ist auf eine Vielzahl von opti-
malen Steuerungsproblemen erweiterbar.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

List of Symbols, Constants, and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

1.1 Low-Thrust Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation for Evolutionary Neurocontrol . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Work Objectives and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Simulation and Propulsion System Models 4

2.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Solar Sail Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Solar Sail Mission Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 DLR Solar Sailcraft Baseline Design . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Solar Radiation Pressure Force Models . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Sail Performance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Equations of Motion for Solar Sailcraft . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Electric Propulsion System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 EP Mission Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 NEP System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 SEP System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Equations of Motion for EP Spacecraft . . . . . . . . . . . . . . . . . . . . . . . 24

3 Traditional Trajectory Optimization 26

3.1 The Low-Thrust Trajectory Optimization Problem . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Objectives for Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 High-Thrust and Low-Thrust Trajectory Optimization . . . . . . . . . . . . . . 27

3.1.3 Low-Thrust Trajectory Optimization from the Perspective of Optimal Control
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Spacecraft Steering Using Local Steering Laws . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Lagrange’s Planetary Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 30



xiv CONTENTS

3.2.2 Pure Local Steering Laws for Spacecraft . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Blended Local Steering Laws for Spacecraft . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Locally Optimal Spacecraft Steering . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Traditional Trajectory Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Concept of a Smart Global Trajectory Optimization Method . . . . . . . . . . . . . . 36

4 Trajectory Optimization Using Evolutionary Neurocontrol 37

4.1 Spacecraft Steering Using Steering Strategies . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Low-Thrust Trajectory Optimization from the Perspective of Machine Learning 38

4.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 What are Artificial Neural Networks? . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 How do Artificial Neural Networks Work? . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 Learning in Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 What are Evolutionary Algorithms? . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 How do Evolutionary Algorithms Work? . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Why do Evolutionary Algorithms Work? . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Advantages and Disadvantages of Evolutionary Algorithms . . . . . . . . . . . 48

4.4 Evolutionary Neurocontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Spacecraft Steering Using Evolutionary Neurocontrol . . . . . . . . . . . . . . . . . . . 50

4.5.1 Neurocontroller Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.2 Neurocontroller Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.3 Neurocontroller Fitness Assignment . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.4 Evolutionary Neurocontroller Design . . . . . . . . . . . . . . . . . . . . . . . . 57

5 InTrance Implementation 59

5.1 Precision and Real-valued Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Premature Convergence and Selection Methods . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Delta Coding and Real Delta Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Evolutionary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Additionally Encoded Problem Parameters . . . . . . . . . . . . . . . . . . . . . . . . 66

6 InTrance Evaluation 67

6.1 Mercury Rendezvous Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Convergence Behavior and Stability . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Different Population Sizes and Accuracy Requirements . . . . . . . . . . . . . . 70



CONTENTS xv

6.1.3 Different Neurocontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.4 Noise and Disturbing Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.5 Optimization of the Launch Date . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Near-Earth Asteroid Rendezvous Mission . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Convergence Behavior and Stability . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Optimization of the Launch Date . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.3 Interplanetary Insertion with Hyperbolic Excess Energy . . . . . . . . . . . . . 79

6.3 Fast Pluto Fly-By Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Convergence Behavior and Stability . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 Close Solar Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Minimal Orbit Transfer Times for Ideal Solar Sailcraft . . . . . . . . . . . . . . . . . . 83

6.5 Multiple Near-Earth Asteroid Rendezvous Using SEP . . . . . . . . . . . . . . . . . . 84

7 Mission Analysis Using InTrance 87

7.1 Minimal Orbit Transfer Times for Non-Ideal Solar Sailcraft . . . . . . . . . . . . . . . 87

7.2 Near-Earth Asteroid Rendezvous and Sample Return Missions . . . . . . . . . . . . . 89

7.2.1 Mission Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.2 Near-Earth Asteroid Rendezvous Mission . . . . . . . . . . . . . . . . . . . . . 90

7.2.3 Near-Earth Asteroid Sample Return Mission . . . . . . . . . . . . . . . . . . . 94

7.2.4 Multiple Near-Earth Asteroid Rendezvous and Sample Return Mission . . . . . 100

7.3 Mercury Rendezvous Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.1 Mission Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.2 Propulsion Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.3 Mission Analysis for Solar Sailcraft . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Piloted Mars Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.1 Mission Objectives and Propulsion Options . . . . . . . . . . . . . . . . . . . . 106

7.4.2 Mission Analysis for NEP Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Summary and Conclusions 109

Bibliography 112

Appendices 119

Appendix A Reference Frames 121

A.1 Inertial Cartesian Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Ecliptic Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3 Orbit Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.4 Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



xvi CONTENTS

Appendix B NSTAR Cluster Control Strategies 125

Appendix C Locally Optimal Spacecraft Steering 127

Appendix D InTrance Program Overview 129

D.1 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D.2 Input and Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D.2.2 The InTrance Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

D.2.3 The Simulation Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D.2.4 The Spacecraft Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D.2.5 The NC Definition File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

D.2.6 The EA Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.2.7 The Simulation Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.2.8 The Trajectory Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.2.9 The VRML File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.2.10 The Control Vector History File . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.2.11 The (Best) Chromosome File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.2.12 The InTrance Report File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



List of Figures

2.1 Non-Keplerian orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Interstellar fly-by using a very advanced laser sail . . . . . . . . . . . . . . . . . . . . . 6

2.3 CFRP boom and solar sail at DLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 DLR solar sailcraft with deployed control mast . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Definition of the sail normal vector and the thrust unit vector . . . . . . . . . . . . . . 8

2.6 SRP force on a perfectly reflecting solar sail . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 SRP force on a non-perfectly reflecting solar sail . . . . . . . . . . . . . . . . . . . . . 10

2.8 Spiralling towards the sun and away from the sun . . . . . . . . . . . . . . . . . . . . . 12

2.9 Angular deviations for the standard SRP force model . . . . . . . . . . . . . . . . . . . 13

2.10 ”Bubbles” for the different SRP force models . . . . . . . . . . . . . . . . . . . . . . . 14

2.11 Comparative performance of different propulsion systems . . . . . . . . . . . . . . . . 19

2.12 NASA’s NSTAR ion thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Dependence of NSTAR parameters on PPU input power . . . . . . . . . . . . . . . . . 23

2.14 Dependence of NSTAR parameters on solar distance . . . . . . . . . . . . . . . . . . . 23

3.1 Traditional low-thrust trajectory optimization using LTOMs . . . . . . . . . . . . . . . 35

3.2 Smart low-thrust trajectory optimization using a GTOM . . . . . . . . . . . . . . . . . 36

4.1 From the optimal chromosome to the optimal trajectory . . . . . . . . . . . . . . . . . 37

4.2 Layered feedforward artificial neural network . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 The sigmoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Multimodal function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Schemata as subspaces in three-dimensional space . . . . . . . . . . . . . . . . . . . . 47

4.6 Mapping of an ANN onto a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 NC for indirect steering of solar sailcraft (matching the orbital elements) . . . . . . . . 52

4.8 NC for indirect steering of solar sailcraft (for increasing/decreasing the orbital elements) 52

4.9 NC for direct steering of solar sailcraft . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 NC for direct steering of EP spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Comparison of direct and indirect steering strategies . . . . . . . . . . . . . . . . . . . 54

4.12 Trajectory optimization using evolutionary neurocontrol . . . . . . . . . . . . . . . . . 58



xviii LIST OF FIGURES

5.1 One-at-a-time reproduction with tournament selection . . . . . . . . . . . . . . . . . . 61

5.2 Real delta coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Evolutionary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Additionally EA encoded problem parameters . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Mercury rendezvous trajectories (ideal sail, reference launch date) . . . . . . . . . . . 68

6.2 Mercury rendezvous (ideal sail, reference launch date) . . . . . . . . . . . . . . . . . . 69

6.3 LDFs for five different steering strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 LDFs for different NC input sets and topologies . . . . . . . . . . . . . . . . . . . . . . 73

6.5 LDFs for different NC output sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.6 Accuracy of the NC steering strategy under NC input noise . . . . . . . . . . . . . . . 74

6.7 Accuracy of the NC steering strategy under random disturbing accelerations . . . . . . 75

6.8 Mercury rendezvous trajectories (ideal sail, optimized launch date) . . . . . . . . . . . 76

6.9 Mercury rendezvous (ideal sail, optimized launch date) . . . . . . . . . . . . . . . . . . 77

6.10 1996FG3 rendezvous (ideal sail, reference launch date) . . . . . . . . . . . . . . . . . . 78

6.11 1996FG3 rendezvous trajectories (ideal sail, optimized launch date) . . . . . . . . . . . 79

6.12 1996FG3 rendezvous (ideal sail, optimized launch date) . . . . . . . . . . . . . . . . . 79

6.13 1996FG3 rendezvous with C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.14 Pluto fly-by trajectories (ideal sail, rmin = 0.49 AU) . . . . . . . . . . . . . . . . . . . . 81

6.15 Pluto fly-by using a double SPAM (ideal sail, rmin = 0.49 AU) . . . . . . . . . . . . . . 81

6.16 Pluto fly-by trajectories (ideal sail, rmin = 0.10 AU) . . . . . . . . . . . . . . . . . . . . 82

6.17 Pluto fly-by using a triple SPAM (ideal sail, rmin = 0.10 AU) . . . . . . . . . . . . . . 82

6.18 Transfer times for ideal solar sailcraft given by Sauer . . . . . . . . . . . . . . . . . . 83

6.19 Minimum orbit transfer times for ideal solar sailcraft . . . . . . . . . . . . . . . . . . . 84

6.20 Re-calculated InTrance-trajectories for the Hera mission . . . . . . . . . . . . . . . . . 86

7.1 Minimum orbit transfer times for ideal and non-ideal solar sailcraft . . . . . . . . . . . 88

7.2 Sketch of some physical properties for selected NEAs . . . . . . . . . . . . . . . . . . . 91

7.3 ENEAS trajectory options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Influence of C3 on ENEAS transfer time . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 ENEASEP trajectory options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.6 ENEAS-SR trajectory option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7 Parametric sections of the ENEAS design space . . . . . . . . . . . . . . . . . . . . . . 96

7.8 Hovering at the asteroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.9 ENEASEP1-SR outward and return trajectory . . . . . . . . . . . . . . . . . . . . . . 99

7.10 ENEASEP3-SR outward and return trajectory . . . . . . . . . . . . . . . . . . . . . . 99

7.11 ENEAS+/ENEAS+SR trajectory options . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.12 MESSENGER-like mission to Mercury using a solar sail . . . . . . . . . . . . . . . . . 104

7.13 BepiColombo-like mission to Mercury using a solar sail . . . . . . . . . . . . . . . . . . 105



LIST OF FIGURES xix

7.14 ”Launch window” for BepiColombo-like mission using a solar sail . . . . . . . . . . . . 105

7.15 Trajectory types for Earth-Mars and Mars-Earth transfers . . . . . . . . . . . . . . . . 107

7.16 Transfer time for Earth return in dependence of departure date at Mars and rmin . . . 108

7.17 Piloted Mars mission analysis diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Ecliptic reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Orbit reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 Orbital motion of two bodies in three-dimensional space . . . . . . . . . . . . . . . . . 124

B.1 Dependence of NSTAR cluster parameters on solar distance for different cluster control
strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

D.1 InTrance input and output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



List of Tables

2.1 Optical coefficients for an Al|Cr-coated solar sail . . . . . . . . . . . . . . . . . . . . . 11

2.2 NSTAR and SCARLET technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Transfer times for different population sizes (FAL1) . . . . . . . . . . . . . . . . . . . . 70

6.2 Transfer times for different population sizes (FAL2) . . . . . . . . . . . . . . . . . . . . 70

6.3 Average InTrance-runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Tested NC input sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Tested NC output sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Transfer times for different steering strategy sets and different NC topologies . . . . . 72

6.7 Technical data for the Hera mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8 Hera mission parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.9 Comparison of Hera reference trajectories with InTrance-trajectories . . . . . . . . . . 86

7.1 Orbital and physical parameters of selected near-Earth asteroids . . . . . . . . . . . . 90

7.2 ENEAS solar sailcraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 ENEASEP spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 ENEAS-SR solar sailcraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 ENEASEP1-SR spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 ENEASEP3-SR spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.7 ENEAS+ and ENEAS+SR solar sailcraft . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.8 ENEAS+/ENEAS+SR mission data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.9 MESSENGER and BepiColombo mission parameters . . . . . . . . . . . . . . . . . . . 103

7.10 MESSENGER- and BepiColombo-like missions using a solar sail . . . . . . . . . . . . 103

7.11 Required sail size for MESSENGER-like mission using a solar sail . . . . . . . . . . . . 104

7.12 Required sail size for BepiColombo-like mission using a solar sail . . . . . . . . . . . . 105



List of Symbols, Constants, and
Acronyms

Latin Symbols:

a semi-major axis

or acceleration
a acceleration vector
c speed of light in vacuum

c steering law weight vector

d direction unit vector
e eccentricity

e♦ ♦. RDC epoch

e unit vector
f true anomaly

f thrust unit vector
g0 Earth standard gravitational accelera-

tion
h orbital angular momentum per space-

craft unit mass
h RDC partial / interim solution

k LSL direction vector
` EA chromosome length

or number of ANN neuron layers

m spacecraft mass

nu number of control variables
nπ number of ANN parameters

n solar sail normal vector
o(S) order of schema S

p probability

or semilatus rectum
q EA population size

r sun–spacecraft distance

∆r distance to target body

r heliocentric position vector

s solar sail lateral length

or specular reflection factor

sγ sigmoid ANN transfer function

t time
t solar sail transverse unit vector
u control vector
∆v velocity relative to target body

v∞ hyperbolic excess velocity vector /
launch velocity vector

wij connection weight between neurons j
and i

x state vector
A solar sail area
A action space

B non-Lambertian coefficient
C3 hyperbolic excess energy / launch en-

ergy

E orbital element
or eccentric anomaly

E vector of orbital elements
E ecliptic coordinate frame (er, eϕ, eθ)

F force
F force vector
G universal gravitational constant

or characteristic optical sail film coefficient

H characteristic optical sail film coefficient

or RDC search hyperspace



xxii LIST OF SYMBOLS, CONSTANTS, AND ACRONYMS

J inertial cartesian coordinate frame
(ex, ey, ez)

Isp specific impulse

J cost function / fitness function / reward
/ reinforcement

K characteristic optical sail film coefficient

L local spacecraft steering law to change
some osculating orbital element with a
maximum rate

L set of local spacecraft steering laws to
change the osculating orbital elements
with a maximum rate

M mean anomaly

or blended local spacecraft steering law to
change or adjust some osculating orbital
element with a maximum rate

M set of blended local spacecraft steering
laws to change or adjust the osculating
orbital elements with a maximum rate

N ANN network function
N set of ANN neurons
N♦ ♦. ANN neuron layer

O orbit coordinate frame (er, et, eh)

P solar radiation pressure

Q local spacecraft steering law to adjust
some osculating orbital element with a
maximum rate

Q set of local spacecraft steering laws to
adjust the osculating orbital elements
with a maximum rate

S solar radiation flux
or EA schema

S spacecraft steering strategy

SP EA selective pressure

T transfer time
or absolute temperature

U spacecraft control vector space

Ve exhaust velocity

∆V velocity increment

W power

X state space

or ANN input set

∆X trajectory accuracy

Y ANN output set

Z orbital element except the anomaly

Z vector of orbital elements except the
anomaly

Greek Symbols:

α absorption coefficient

or sail clock angle

β sail cone angle

γ thrust clock angle

or temperature parameter of the sigmoid
ANN transfer function

γi temperature parameter of neuron i

δ thrust cone angle

δ(S) defining length of schema S

δ RDC delta chromosome
ε emission coefficient
ε centerline angle

ζ E-O-rotation angle

η solar sail efficiency parameter

θ elevation angle

θi bias of neuron i

ι inclination
κ RDC hyperspace contraction parameter

κ exponent for variation of SEP power
with solar distance

λ solar sailcraft lightness number

µ heliocentric gravitational constant

or EA tournament size
ν RDC convergence parameter

ξ EA chromosome / individual / string

πππ ANN parameter vector

$ longitude of pericenter

ρ reflection coefficient
σ solar sailcraft loading

or Stefan-Boltzmann constant
τ number of finite time intervals for dis-

cretization
or transmission coefficient

ϕ azimuth angle

χ throttle
ω argument of perihelion



LIST OF SYMBOLS, CONSTANTS, AND ACRONYMS xxiii

Λ mean longitude Ξ EA population

Ω longitude of ascending node

Other Symbols and Notations:

� arbitrary variable

�̇ d�/dt

�̈ d2�/dt2

�∗ locally optimal �

�? optimal �

�̃ required �

� lower bound
� upper bound

or discrete �
�[t] time history / trajectory of �

♦ arbitrary index

�� parallel

�� anti-parallel

〈. . .〉 EA chromosome
(. . .) open interval

[. . .] closed interval

Indices:

0 at 1 AU distance
or at launch

b (solar sail) back side

av available
avg average

b back reflection
c characteristic (solar sail at r = 1 AU

with β = 90◦)

or crossover
d diffuse reflection
dry dry

eff effective
f final
f (solar sail) front side

m mutation
s specular reflection

sc survival of crossover
sm survival of mutation
G (solar) gravitation

P propellant

PL payload

PPU power processing unit

R reference
SA sail assembly

SC spacecraft

SRP solar radiation pressure

Sys system

T target

Tank tank
πππ parameterized by the ANN parameter

vector



xxiv LIST OF SYMBOLS, CONSTANTS, AND ACRONYMS

Constants:

Universal gravitational constant [1]:

G = (6.67259± 0.00030) · 10−11 m3

kg s2

Mass of the sun:

M� = (1.98893± 0.00059) · 1030 kg

Heliocentric gravitational constant [1]:

µ = GM� = (1.32713430018± 0.00000000008) · 1020 m3

s2

Mean sun–Earth distance (astronomical unit distance) [1]:

r0 = 149 597 870 697(±3)m = 1 AU

Gravitational acceleration of the sun at r0:

a0 =
µ

r2
0

= (5.93010834± 0.00000006)
mm
s2

Mean solar radiation flux at 1AU solar distance (solar constant) [14]:

S0 = 1368
W
m2

Earth standard gravitational acceleration (source: scientific calculator HP48SX):

g0 = 9.80665
m
s2



LIST OF SYMBOLS, CONSTANTS, AND ACRONYMS xxv

Acronyms:

AAAF L’Association Aéronautique et As-
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1 Introduction

Innovative solar system exploration missions require ever larger velocity increments and thus
ever more demanding propulsion capabilities. Using the state-of-the-art technique of chemi-
cal propulsion in combination with (eventually multiple) gravity assist maneuvers for those
high-energy missions results in long, complicated, and inflexible mission profiles. Low-thrust
propulsions systems can significantly enhance or even enable those high-energy missions,
since they utilize the propellant more efficiently – like electric propulsion systems – or do
not consume any propellant at all – like solar sails, that utilize solely the freely available
solar radiation pressure for propulsion. Consequently, low-thrust propulsion systems permit
significantly larger velocity increments and/or larger payload ratios and/or smaller launch
vehicles, while at the same time allowing direct trajectories with reduced flight times, simpler
mission profiles, and extended launch windows, providing more mission flexibility.

1.1 Low-Thrust Trajectory Optimization

One of the most important tasks during the analysis and the design of a deep space mission is
the design and the optimization of the interplanetary transfer trajectory. This work deals with
the problem of searching optimal interplanetary trajectories for low-thrust spacecraft, where
a low but continuous thrust is applied to modify the spacecraft’s orbit over an extended
period of time. In simple words, a spacecraft trajectory is the spacecraft’s path from A
(the initial body or orbit) to B (the target body or orbit). In general, optimality can be
defined according to several objectives like transfer time or propellant consumption. Since
solar sailcraft do not consume any propellant, their trajectories are typically optimized with
respect to transfer time alone. Trajectory optimization for electric propelled spacecraft is less
straightforward, since transfer time minimization and propellant minimization are sometimes
competing objectives, so that one objective can only be optimized at the cost of the other
objective.

Spacecraft trajectories are obtained from the (numerical) integration of the spacecraft’s equa-
tions of motion, which contain terms for the external forces that are acting on the spacecraft
(gravitational forces and ”disturbing” forces like solar radiation and solar wind) and for the
thrust force. Besides the inalterable external forces, the trajectory is determined by the vari-
ation of the thrust vector, which is typically described by a (spacecraft) control function.
Therefore, the actual optimization problem is to find the optimal spacecraft control function
that yields the optimal trajectory.

For spacecraft with high thrust like chemical rockets, optimal interplanetary trajectories can
be found relatively easily1, since only a few thrust phases are necessary. These thrust phases
are very short compared to the transfer time, so that they can be approximated by singu-
lar events that change the spacecraft’s velocity instantaneously while its position remains
fixed. In contrast to those high-thrust propulsion systems, low-thrust propulsion systems are
required to operate for a significant part of the transfer to generate the necessary velocity
increment ∆V . Consequently, the spacecraft control function is a continuous function of

1 as long as no gravity assist maneuvers are required
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time and the dimension of the solution space is infinite. This renders low-thrust trajectory
optimization a very difficult problem.

Traditionally, low-thrust trajectories are optimized by the application of numerical optimal
control methods that are based on the calculus of variations. All these methods can be
generally classified as local trajectory optimization methods, where the term optimization
does not mean ”finding the best solution” but rather ”finding a solution”. The convergence
behavior of local trajectory optimization methods depends on an adequate initial guess of the
solution, which is often hard to find. Mostly, many initial guesses have to be conceived until
an adequate one is found and convergence is achieved. Since all tasks require frequent manual
interactions and thus the permanent attendance of an expert in astrodynamics and optimal
control theory, the search for a good trajectory can become very time-consuming and thus
expensive. Even if convergence is achieved, a local optimum is typically found, which is close
to the initial guess that is rarely close to the (unknown) global optimum.

Emanating from the drawbacks of the traditional local trajectory optimization methods, a
smart global trajectory optimization method is sought that runs without an initial guess and
without the permanent attendance of a trajectory optimization expert.

1.2 Motivation for Evolutionary Neurocontrol

Evolutionary neurocontrollers fuse artificial neural networks with evolutionary algorithms.
Like the underlying constructs, they are inspired by the natural processes of information pro-
cessing and optimization. Animal nervous systems incorporate natural evolutionary neuro-
controllers to control their actions, giving them marvellous capabilities. One brilliant example
for this proposition is the smart flight control system of the housefly. The nervous system of
the housefly comprises about 100 000 neurons. This natural neural network manages the flight
control of the fly as well as many even more difficult tasks like finding food, finding a mate,
producing offspring, etc. As a matter of fact, this flight control system is more ingenious than
the one of any aircraft man has ever built. Nature has optimized the fly’s neurocontroller with
respect to one single objective: survive to produce offspring. This optimization problem is
really very difficult, much more than finding some optimal spacecraft trajectory. Nature has
solved this problem through the recombination and mutation of the fly’s genetic material and
through natural selection, the famous so-called ”survival of the fittest”. Fitter flies produce
more offspring and there is a high probability that some of them are still smarter than their
parents. This very elegant optimization process runs without an initial guess and without
employing the calculus of variations! So, if a natural evolutionary neurocontroller can steer a
housefly optimally from A to B, why should an artificial evolutionary neurocontroller not be
able to steer a spacecraft optimally from A to B?

1.3 Work Objectives and Outline

The primary objective of this work is to develop a smart global trajectory optimization method
that does not have the drawbacks of the traditional local trajectory optimization methods, as
stated above. This novel method, termed ”InTrance” (which stands for ”Intelligent Trajectory
optimization using neurocontroller evolution”) employs evolutionary neurocontrol to search
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near-globally2 optimal spacecraft trajectories without an initial guess and without the per-
manent attendance of a trajectory optimization expert.

Within chapter 2, the simulation model and the propulsion system models are established that
are used within this work to simulate the motion of low-thrust spacecraft in interplanetary
space.

Within chapter 3, a formal framework for trajectory optimization is given from the perspective
of optimal control theory, and it is exemplified how – using local spacecraft steering laws
and numerical methods of optimal control – low-thrust trajectories are generally optimized.
Special emphasis is given to the problems that local trajectory optimization methods typically
encounter.

Within chapter 4, it is demonstrated that trajectory optimization problems can also be at-
tacked from the perspective of artificial intelligence and machine learning. Within this con-
text, the problem of searching an optimal trajectory is equivalent to the problem of searching
an optimal spacecraft steering strategy. An artificial neural network can be employed as a
neurocontroller to implement such a steering strategy, and an evolutionary algorithm can be
used to find the neurocontroller that represents the optimal steering strategy that in turn
yields the optimal trajectory.

Within chapter 5, the implementation of InTrance is described.

Before InTrance can be considered as a viable low-thrust trajectory optimization tool, its
convergence behavior has to evaluated and the quality of the obtained solutions has to be
assessed. Within chapter 6, InTrance is applied to re-calculate existing trajectories for sev-
eral interplanetary low-thrust trajectory optimization problems (rendezvous problems, fly-by
problems, orbit transfer problems, solar sails, solar electric propulsion systems). By compar-
ing the obtained InTrance-results with the existing results, it is shown that InTrance is able
to find trajectories that are better (faster and fairly accurate for mission feasibility analysis)
than the original trajectories, which have been calculated using traditional local trajectory
optimization methods.

The secondary objective of this work is to assess the near-term applicability of solar sail
propulsion for deep space missions. Within chapter 7, the suitability of InTrance as a tool
for mission feasibility analysis and design is assessed. Therefore, InTrance is applied to
analyze and design some innovative solar sail missions, and to compare the solar sail mission
parameters with those of electric propulsion systems. This is first done for a near-Earth
asteroid rendezvous mission, for a near-Earth asteroid sample return mission, and for a mission
to rendezvous three different near-Earth asteroids (including a sample return option). Then,
two missions are investigated that employ a solar sail for a MESSENGER- and BepiColombo-
like mission to Mercury. Finally, it is shown how InTrance can be used to facilitate the
feasibility analysis for a piloted Mars mission.

2 near -globally optimal, since for ”real-world” optimization problems global optimality can rarely be proved



2 Simulation and Propulsion System
Models

Within this chapter, the simulation model is described that is used within this work to
simulate the motion of low-thrust spacecraft in interplanetary space (section 2.1). Then, a
solar sail model is elaborated (section 2.2) as well as two electric propulsion (EP) system
models (section 2.3): a simple nuclear electric propulsion (NEP) system model (section 2.3.2)
and a more specific solar electric propulsion (SEP) system model (section 2.3.3).

2.1 Simulation Model

Besides the gravitational forces of all celestial bodies and the spacecraft’s thrust force, many
”disturbing” forces1 are influencing the motion of spacecraft. Ideally, all these forces have to
be considered for a thorough mission analysis, and (ideally !) the theory of general relativity
has to be applied to describe the motion of spacecraft. However, to assess the viability of
different spacecraft trajectory optimization methods, and for mission feasibility analysis, as
done within this work, only ”preliminary” trajectory analysis needs to be done, which allows
some simplifications:

1. Spacecraft is moving under the sole influence of solar gravitation and – in the case of
solar sailcraft – solar radiation. The sun is a point mass and a point light source. All
disturbing forces that are small in magnitude compared to gravitation and – in the case
of solar sailcraft – solar radiation pressure (SRP) are neglected. Also ignored are the
gravitational and radiative forces of other celestial bodies2. This simplification results in
a limitation of the simulation model to heliocentric trajectories. Since the spacecraft’s
mass is many orders of magnitude smaller than the sun’s mass, one has a one-body
problem, where the spacecraft is assumed to orbit around the sun’s center of mass.3

2. The motion of spacecraft can be described by Newton’s approximation to the field
equations of general relativity.

3. The magnitude and direction of the spacecraft’s thrust vector can be changed instanta-
neously.

4. The spacecraft systems (e.g. sail film, solar arrays, electric thrusters, etc.) do not
degrade over time.

2.2 Solar Sail Model

Within this section – as a brief introduction to solar sail propulsion – the unique mission
capabilities of solar sails are outlined (section 2.2.1) and the DLR solar sailcraft baseline
1 as caused e.g. by the solar wind and the aberration of solar radiation (Poynting–Robertson effect)
2 including the launch and the target body
3 In a two-body problem both the spacecraft and the sun would rotate about their barycenter.
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design is introduced (section 2.2.2). Subsequently, the three different SRP force models that
are commonly used to describe the motion of solar sailcraft are elaborated (section 2.2.3).
Then, the prevalent solar sail(craft) performance parameters are introduced and utilized for
expressing the SRP force that is acting on the sail (section 2.2.4). Finally, the equations of
motion for solar sailcraft in interplanetary space are derived (section 2.2.5).

2.2.1 Solar Sail Mission Capabilities

Utilizing solely the freely available solar radiation pressure for propulsion, solar sails provide a
wide range of opportunities for innovative interplanetary low-cost missions, many of which are
difficult or even impossible for any other type of conventional propulsion system due to their
large ∆V -requirement. Within the inner solar system (including the main asteroid belt), solar
sailcraft are especially suited for multiple rendezvous and sample return missions due to their
(at least in principle) unlimited ∆V -capability. But even missions to the outer solar system
may be enhanced by using solar sails, albeit the solar radiation pressure decreases ∼ 1/r2.
For such missions, solar sailcraft may gain a large amount of energy when first approaching
the sun, thereby performing a so-called ”solar photonic assist” maneuver that turns the
trajectory into a hyperbolic one [51, 52, 80]. Such trajectories allow reasonable transfer
times to the outer planets (and to near interstellar space) without the need to perform any
gravity assist maneuver. However, without the use of additional propulsive devices and/or
an aerocapture maneuver at the target body, only fast fly-bys can be achieved due to the
associated large hyperbolic excess velocities. A specific application for advanced solar sailcraft
are non-Keplerian orbits, where the propulsive force is used to cancel out a part of the solar
gravitation (figure 2.1) [60]. Solar sails are especially suited for such non-Keplerian orbits,
since they can apply such a force continuously. This allows some exciting unique trajectories.
For example, the orbital plane of the sailcraft can be displaced above Earth’s orbital plane,
so that the sailcraft can stay ”fixed” above the Earth4 at some distance, if the orbital periods

Figure 2.1 Non-Keplerian orbit (from [60])

4 in a co-rotating reference frame
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are equal. In such orbits, solar sailcraft can be used as communication satellites for high
latitudes [38]. In some distant future, laser sailcraft – propelled to relativistic velocities by
very powerful lasers – may transcend the limitations of the inverse square law of solar radiation
pressure and accomplish interstellar travel (figure 2.2) [37].

Figure 2.2 Interstellar fly-by using a very advanced laser sail (from [37])

2.2.2 DLR Solar Sailcraft Baseline Design

The DLR solar sail baseline design is a square sail that consists of four CFRP (Carbon
Fiber Reinforced Plastics) booms (figure 2.3.1) and of four triangular sail segments made
of aluminum-coated plastic film (see figure 2.3.2). The booms consist of two CFRP shells
that are bonded at the edges to form a tubular shape , so that they can be pressed flat and
rolled up in a central deployment module. During deployment, they unfold automatically
and return to their tubular shape with high bending and buckling strength. Subsequently,
the four sail segments are deployed by ropes. At DLR, a (20 m)2 solar sail was successfully
deployed in December 1999 on-ground in a simulated gravity-free environment and ambient
environmental conditions (figure 2.3.2) [53, 86].

2.3.1: Deployable CFRP boom at DLR 2.3.2: Deployed (20 m)2 solar sail at DLR

Figure 2.3
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According to the DLR baseline design (figure 2.4), the solar sail and the payload micro-
satellite are separated by a collapsible control mast, which is housed inside the deployment
module in its stowed configuration. This control mast is attached to the deployment module
via a two degree of freedom actuator gimbal, which allows to rotate the mast including the
attached micro-satellite with respect to the sail. By rotating the control mast, the center of
mass (CM) can be offset from the center of pressure (CP). The resulting external torque may
be used to rotate the sail about any CM-intersecting axis parallel to the sail plane.5

Figure 2.4 DLR solar sailcraft with deployed control mast (artist’s view)

2.2.3 Solar Radiation Pressure Force Models

For the optical characteristics of a solar sail, different assumptions can be made, which result
in different models for the magnitude and direction of the SRP force acting on the sail.
The most simple model assumes a perfectly reflecting sail surface (section 2.2.3.3). Since a
real solar sail is not a perfect reflector, a thorough trajectory simulation must employ a more
sophisticated SRP force model, which takes into account the optical characteristics of the real
aluminum-coated sail film (section 2.2.3.4). For very preliminary mission feasibility analysis,
however, a simplified optical solar sail model may be used (section 2.2.3.5), which facilitates
an analytical treatment of solar sail mechanics. All three SRP force models do not take into
account the shape of the sail film under load but assume a plane sail surface. During the
study for a comet Halley rendezvous mission with a solar sail, which has been performed at
NASA/JPL in 1976–77, also a numerical parametric force model has been developed, which
takes into account the exact shape of the sail under load [60]. Recently, also numerical analyses
to predict the effects of structural wrinkles in the stressed sail film have been performed [69].
However, since those models depend essentially on the actual sail design, they are not used
within this work.

5 This propulsionless attitude control concept was originally proposed by Angrilli et al. [7].
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2.2.3.1 Solar Radiation Pressure

It can be derived from the laws of quantum mechanics and special relativity,6 that the solar
radiation pressure (SRP) due to the momentum transport by solar photons is

P =
S

c
(2.1)

where S is the solar radiation flux, and c is the speed of light in vacuum.

Since the radiation flux of a point light source varies with the inverse square of distance,
and the mean solar radiation flux at sun–Earth distance r0 = 1 AU is the well-known solar
constant7 S0 = 1368W/m2, the SRP at a distance r from the sun is

P =
S0

c

(r0

r

)2 .= 4.563
µN
m2

·
(r0

r

)2
(2.2)

2.2.3.2 Sail Normal Vector and Thrust Unit Vector

For expressing the SRP force exerted on a solar sail, it is convenient to introduce two unit
vectors. The first one is the sail normal vector n, which is a unit vector that is perpendicular
to the sail surface and always directed away from the sun (n · er ≥ 0). Its direction, which
describes the sail attitude, is – according to figure 2.5.1 – usually expressed by the sail clock
angle α and the sail cone angle β. The second unit vector is the thrust unit vector f ,
which points always along the direction of the thrust force. Its direction is described likewise
by the thrust clock angle γ and the thrust cone angle δ – according to figure 2.5.2.

2.5.1: Definition of the sail clock angle α and the
sail cone angle β

2.5.2: Definition of the thrust clock angle γ and
the thrust cone angle δ

Figure 2.5

2.2.3.3 Ideal SRP Force Model

The force exerted on a perfectly reflecting solar sail can easily be calculated from figure 2.6.
Using er and er′ as the unit vectors along the direction of the incident and the reflected
6 see [60] pp. 34–36
7 the solar constant is actually not a constant but varies approx. 0.1% over days and drifts approx. 0.2-0.6%

over centuries [11]
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Figure 2.6 SRP force on a perfectly reflecting solar sail

radiation, the force exerted on the sail due to the incident photons is

Fr = PA(er · n)er

where A(er ·n) is the projected sail area along the er-direction. The force exerted on the sail
due to the reflected photons is

Fr′ = −PA(er · n)er′

Therefore, using er − er′ = 2(er · n)n, the total SRP force exerted on the sail is given by

FSRP = Fr + Fr′ = 2PA(er · n)2n

and, making use of er · n = cos β,

FSRP = 2PA cos2 β n (2.3)

Looking at equation (2.3), one can see that the SRP force exerted on a perfectly reflecting
solar sail is always along the direction of the sail normal vector, i.e. f = n.

2.2.3.4 Standard SRP Force Model

Since a real solar sail is not a perfect reflector, a thorough trajectory simulation must consider
the optical characteristics of the real sail film, which can be parameterized by the absorption
coefficient α, the reflection coefficient ρ, the transmission coefficient τ , and the emission
coefficient ε, with the constraint

α + ρ + τ = 1 (2.4)

Assuming τ = 0 for the reflecting side of the solar sail, the absorption coefficient is

α = 1− ρ (2.5)
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Since for a real solar sail not all photons are reflected specularly, the reflection coefficient can
be further divided into a coefficient for specular reflection ρs, a coefficient for diffuse reflection
ρd, and a coefficient for back reflection ρb, with the constraint

ρs + ρd + ρb = ρ (2.6)

Assuming ρb = 0, this can also be expressed by introducing a specular reflection factor s, so
that

s =
ρs

ρ
⇒ ρs = sρ and ρd = (1− s)ρ (2.7)

The emission coefficient ε describes the power that is emitted from a surface of area A at
absolute temperature T :

W = AεσT 4 (2.8)

where σ is the Stefan-Boltzmann constant. Using the emission coefficients of the sail’s
front and back side, εf and εb, the equilibrium temperature of the sail can be calculated:8

T =
(

1− ρ

εf + εb

c

σ
P cos β

)1/4

∼ cos1/4 β

r1/2
⇒ rmin ∼

1
T 2

max

(2.9)

It can be seen that there is a minimum sun-sail distance rmin, which is inversely proportional
to the square of the sail film temperature limit Tmax.

It can be shown8 that, using the optical sail parameters defined above, the SRP force exerted
on the solar sail has a normal component Fn and a transversal component Ft (see figure 2.7)
with

Fn = PA

(
(1 + sρ) cos β + Bf(1− s)ρ + (1− ρ)

εfBf − εbBb

εf + εb

)
cos β n (2.10a)

Ft = PA(1− sρ) sinβ cos β t (2.10b)

Figure 2.7 SRP force on a non-perfectly reflecting solar sail

8 see [60] pp. 48–49 for derivation
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where t is a transverse unit vector perpendicular to n (so that t · er ≥ 0), and Bf and Bb are
the non-Lambertian coefficients of the sail’s front and back side. Wright gives values for
the optical coefficients for a sail9 with a highly reflective aluminum-coated front side and a
highly emissive chromium-coated back side10 (table 2.1) [98].

front side back sideparameter
(Al-coated) (Cr-coated)

ρ 0.88
s 0.94
ε 0.05 0.55
B 0.79 0.55

Table 2.1 Optical coefficients for an Al|Cr-coated solar sail

Using the values given in table 2.1, three characteristic optical sail film coefficients may be
defined to simplify equations (2.10) [78]:

G = 1 + sρ = 1.8272 (2.11a)

K = Bf(1− s)ρ + (1− ρ)
εfBf − εbBb

εf + εb
= −0.010888 (2.11b)

H = 1− sρ = 0.1728 (2.11c)

so that

Fn = PA (G cos β + K) cos β n (2.12a)
Ft = PAH sinβ cos β t (2.12b)

The total SRP force vector may then be written as

FSRP =
√

F 2
n + F 2

t f = PA

√
(G cos β + K)2 + H2 sin2 β cos β f (2.13)

and, by defining Q(β) =
√

(G cos β + K)2 + H2 sin2 β cos β, as

FSRP = PAQ(β) f (2.14)

where Q(β) depends only on the sail cone angle β and the optical coefficients of the sail film.
The angle between f and er is the thrust cone angle δ and the angle between f and n is called
centerline angle ε. It may be calculated via

ε = arctan
(

Ft

Fn

)
= arctan

(
H sinβ

G cos β + K

)
(2.15)

Equation (2.15) gives then also the relation for the thrust cone angle:

δ = β − ε = β − arctan
(

H sinβ

G cos β + K

)
(2.16)

9 JPL square sail and JPL heliogyro
10 to keep the sail temperature at a moderate limit. Using equation (2.9) and table 2.1, one can easily

calculate a maximum equilibrium temperature of T = 490.5K (217.4 ◦C) at 1AU for an Al|Al-coated
solar sail (for n · er = 1), whereas T = 313.4K (40.2 ◦C) for an Al|Cr-coated sail.
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2.2.3.5 Simplified SRP Force Model

In the solar sail-related literature, a simplified SRP force model is typically employed, which
uses an overall sail efficiency parameter η. This parameter is intended to encompass the
non-perfect reflectivity of the sail as well as the sail deflection/warping under load. Using
this parameter, the SRP force acting on the sail is described by

FSRP = 2ηPA cos2 β n (2.17)

This SRP force model is widely used, because it allows an easy analytical treatment of solar
sail mechanics (since f = n). However, it provides only a rough approximation of the real
sail, as it will be shown in the next section.

2.2.3.6 SRP Force Model Comparison

For the ideal and the simplified SRP force model, the SRP force is always perpendicular to the
sail surface, f = n. This allows an easy analytical treatment of solar sail steering problems.
The orbital dynamics of solar sailcraft is in many respects similar to the orbital dynamics of
other low-thrust spacecraft. However, as figure 2.8 shows, other low-thrust spacecraft may
orient its thrust vector into any desired direction, whereas the thrust vector of solar sailcraft
is constrained to lie on the surface of a ”bubble” that is always directed away from the sun.11

Figure 2.8 Spiralling towards the sun and away from the sun

11 Nevertheless, by controlling the sail orientation relative to the sun, solar sailcraft can loose orbital angular
momentum and spiral inwards – towards the sun – or gain orbital angular momentum and spiral outwards
– away from the sun.
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If d denotes the unit vector along the desired (locally optimal) thrust direction, the thrust
unit vector f must point into the direction f∗ that maximizes the SRP force along d; f∗ can be
derived analytically from d (see section 3.2.4.2). The sail normal vector n – as expressed by
the sail clock angle α and the sail cone angle β – is the spacecraft control vector, u = (α, β).
The problem of solar sailcraft steering is to determine n so that f = f∗. For the standard
SRP force model, n can not be calculated analytically from f , since the Q(β)-expression can
not be resolved for β. Hence, the spacecraft control vector that maximizes the SRP force
along the desired thrust direction can not be obtained analytically.

Although the ideal and the simplified SRP force model allow the analytical treatment of solar
sail steering problems, they misrepresent the normal SRP force component Fn and completely
ignore the transverse SRP force component Ft. In doing so, both models ignore the deviation
of the thrust cone angle from the sail cone angle. Figure 2.9 shows how the deviation becomes
larger as the light incidence angle increases. As a consequence, the SRP force in the standard
SRP force model is not only smaller than in the ideal SRP force model (which is also taken into
account by the simplified SRP force model) but also much more constrained in its direction
(figure 2.9 shows that there is a maximum thrust cone angle of 55.5◦ for a sail cone angle of
72.6◦).

Figure 2.9 Sail cone angle, thrust cone angle and centerline angle for the standard SRP force model

Figure 2.10 shows for each SRP force model the ”bubble” on whose surface the SRP force
vector tip is constrained to lie (vector tail at origin). From the perspective of trajectory
analysis, the simplified SRP force model is equivalent to the ideal SRP force model, since
the shape of both ”bubbles” is identical. A decrease in sail efficiency η can be offset with a
proportional increase in sail area, so that both ”bubbles” have the same shape and size. This
equivalency is not the case for the standard SRP force model. Even if the cos2 β-”bubble”
and the Q(β)-”bubble” are scaled to the same size, their shape is different.

Since the ideal and the simplified SRP force model are equivalent with respect to trajectory
analysis, they can both be denoted as models of ”perfect” reflection, whereas the standard
SRP force model is a model of non-perfect reflection. The associated solar sails will also
be denoted as ideal sails and non-ideal sails.
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Figure 2.10 SRP force ”bubbles” for the different SRP force models

The results that have been obtained within this work (see section 7.1) show that the sim-
plification of taking the non-perfect reflectivity of the sail into account by using an overall
efficiency factor η should only be made for very preliminary mission feasibility analysis.

2.2.4 Sail Performance Parameters

Within this section, the commonly used solar sailcraft performance parameters are introduced
and used for expressing the SRP force acting on the sail.

2.2.4.1 Sail Assembly Loading

The sail assembly loading

σSA =
mSA

A
(2.18)

is defined as the mass of the sail assembly (the sail film and the required structure for storing,
deploying and tensioning the sail, index ”SA”) per unit area. Thus, the sail assembly loading
is the key parameter for the efficiency of the solar sail’s structural design.

2.2.4.2 Sailcraft Loading

The sailcraft loading

σ =
m

A
=

mSA + mPL

A
= σSA +

mPL

A
(2.19)
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is defined as the specific mass of the sailcraft including the payload (index ”PL”), where
the term payload stands for the total sailcraft except the solar sail assembly (i.e. except the
propulsion system).

2.2.4.3 Characteristic Acceleration

Equations (2.14) and (2.17) may also be expressed in terms of the characteristic accel-
eration ac, which is defined as the SRP acceleration acting on a solar sail that is oriented
perpendicular to the sun line (n · er = 1) at sun–Earth distance r0, where FSRP = Fc, the
characteristic SRP force.

For the standard SRP force model, Fc = P0A(G + K) and therefore

ac =
Fc

m
= P0(G + K)

A

m
=

P0(G + K)
σ

(2.20)

or, writing Peff,0 = P0(G + K) = S0/c · (G + K) .= 8.288 µN/m2 for the effective SRP at
Earth distance,

ac =
Peff,0

σ
=

Peff,0

σSA + mPL
A

(2.21)

The SRP force may then be written as

FSRP = mac

(r0

r

)2 Q(β)
G + K

f = mac

(r0

r

)2
Q′(β) f (2.22)

For the simplified SRP force model, one gets

ac =
Fc

m
= 2ηP0

A

m
=

2ηP0

σ
(2.23)

or, writing Peff,0 = 2ηP0 = 2ηS0/c for the effective SRP at Earth distance, again equa-
tion (2.21). The SRP force for the simplified SRP force model may then be written as

FSRP = mac

(r0

r

)2
cos2 β n (2.24)

Comparing equation (2.20) and (2.23), one can see that in order to get the same characteristic
acceleration for both SRP force models, one has to set η = (G + K)/2 .= 0.908.

2.2.4.4 Lightness Number

Equations (2.14) and (2.17) may also be expressed in terms of the lightness number λ,
which is defined as the ratio of the SRP acceleration acting on a solar sail that is oriented
perpendicular to the sun line (n ·er = 1), and the gravitational acceleration of the sun, aG(r):

λ =
ac

(
r0
r

)2
µ
r2

=
acr

2
0

µ
=

ac

a0
(2.25)
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with a0 = aG(r0) = µ/r2
0

.= 5.930 mm/s2 as the sun’s gravitational acceleration at Earth
distance.12

Using equation (2.25), the SRP force may be written as

FSRP = λ
µm

r2
Q′(β) f (2.26)

for the standard SRP force model and

FSRP = λ
µm

r2
cos2 β n (2.27)

for the simplified SRP force model.

2.2.5 Equations of Motion for Solar Sailcraft

Within this section, the equations of heliocentric translational motion within the one-body
simulation model and without disturbing forces are derived for ideal and non-ideal sailcraft.
Ignoring second order effects, the acceleration of solar sailcraft is simply obtained by adding
the SRP acceleration and the sun’s gravitational acceleration

r̈ = aSRP + aG (2.28)

Resolving this equation along the unit vectors of the ecliptic reference frame (E-frame, see
appendix A.2) will then give three 2nd order DEs for r, ϕ, and θ respectively, the DES of
motion.

2.2.5.1 Ideal Solar Sail Models

Using equation (2.27), one gets for the ideal/simplified SRP force model

r̈ = aSRP + aG = λ
µ

r2
cos2 β n− µ

r2
er (2.29)

Resolving n along the O-frame unit vectors (see appendix A.3), one obtains

n = cos βer + cos α sin βet + sinα sinβeh (2.30)

and after transformation into the E-frame

n = cos βer + cos(α + ζ) sinβeϕ + sin(α + ζ) sinβeθ (2.31)

By introducing three dimensionless control functions u′1 to u′3, depending only on the two
control variables α and β, and on the local E-O-rotation angle ζ13

u′1(β) = cos3 β (2.32a)

u′2(α + ζ, β) = cos(α + ζ) sinβ cos2 β (2.32b)

u′3(α + ζ, β) = sin(α + ζ) sinβ cos2 β (2.32c)

12 Since both accelerations have an inverse square variation in r, the lightness of solar sailcraft is – unlike
the maximum acceleration – independent of the sun–sail distance.

13 as defined in appendix A.3
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and using equation (2.31), one may write the acceleration of the solar sailcraft in E-frame
components as:

r̈ = (λ
µ

r2
u′1 −

µ

r2
)er + λ

µ

r2
u′2eϕ + λ

µ

r2
u′3eθ (2.33)

Expressing r̈ in polar coordinates (see appendix A.2), one gets three component equations:

r̈ − rθ̇2 − rϕ̇2 cos2 θ = λ
µ

r2
u′1 −

µ

r2
(2.34a)

2ṙϕ̇ cos θ + rϕ̈ cos θ − 2rϕ̇θ̇ sin θ = λ
µ

r2
u′2 (2.34b)

2ṙθ̇ + rθ̈ + rϕ̇2 sin θ cos θ = λ
µ

r2
u′3 (2.34c)

and after some rearrangement the DES of motion

r̈ = rθ̇2 + rϕ̇2 cos2 θ − µ

r2
+ λ

µ

r2
u′1 (2.35a)

ϕ̈ = −2
ṙϕ̇

r
+ 2ϕ̇θ̇ tan θ + λ

µ

r2

u′2
r cos θ

(2.35b)

θ̈ = −2
ṙθ̇

r
− ϕ̇2 sin θ cos θ + λ

µ

r2

u′3
r

(2.35c)

2.2.5.2 Non-Ideal Solar Sail Model

Using equation (2.26), one gets for the standard SRP force model

r̈ = aSRP + aG = λ
µ

r2
Q′(β) f − µ

r2
er (2.36)

Resolving f along the O-frame unit vectors, one obtains

f = cos δer + cos γ sin δet + sin γ sin δeh (2.37)

and after transformation into the E-frame

f = cos δer + cos(γ + ζ) sin δeϕ + sin(γ + ζ) sin δeθ (2.38)

where γ = α and δ = β − arctan
(

H sin β
G cos β+K

)
.

By introducing three dimensionless control functions u′1 to u′3, depending only on the two
control variables α and β, the local E-O-rotation angle ζ, and the optical characteristics of
the sail film

u′1(β) = Q′(β) cos δ(β) (2.39a)
u′2(α + ζ, β) = Q′(β) cos(α + ζ) sin δ(β) (2.39b)
u′3(α + ζ, β) = Q′(β) sin(α + ζ) sin δ(β) (2.39c)

one gets again equation (2.33)

r̈ = (λ
µ

r2
u′1 −

µ

r2
)er + λ

µ

r2
u′2eϕ + λ

µ

r2
u′3eθ
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and thus again equations (2.35)

r̈ = rθ̇2 + rϕ̇2 cos2 θ − µ

r2
+ λ

µ

r2
u′1

ϕ̈ = −2
ṙϕ̇

r
+ 2ϕ̇θ̇ tan θ + λ

µ

r2

u′2
r cos θ

θ̈ = −2
ṙθ̇

r
− ϕ̇2 sin θ cos θ + λ

µ

r2

u′3
r

but with different control functions.

2.3 Electric Propulsion System Models

Within this section, two EP system models are elaborated. The first one is a very simple NEP
system with constant power input and constant specific impulse that can be throttled via the
propellant mass flow rate (section 2.3.2). The second one is a more specific SEP system with
variable power input and variable specific impulse (section 2.3.3). Before this is done, as a
brief introduction to electric propulsion in general, the mission capabilities of EP systems are
outlined (section 2.3.1).

2.3.1 EP Mission Capabilities

In chemical propulsion systems, chemical reactions release heat that raises the combustion
gas temperature to high values. Expanded through a nozzle, the thermal energy is converted
into kinetic energy and hence provides thrust. The exhaust velocity is Ve ≈ 3 000− 5 000m/s
(specific impulse Isp = Ve/g0 ≈ 300 − 500 s), being limited by the chemical energy that is
stored in the propellant [36]. If this Ve is inserted into the rocket equation

mf

m0
= e−

∆V
Ve ⇔ mP

m0
=

m0 −mf

m0
= 1− e−

∆V
Ve (2.40)

one can see that even for a moderate velocity increment ∆V of about 2Ve, the propellant
mass mP must be 1− e−2 = 86.5% of the initial mass m0, where mf is the final mass.

Innovative solar system exploration missions require an ever increasing ∆V budget. Using for
those high-energy missions the state-of-the-art technique of chemical propulsion in combina-
tion with (eventually multiple) gravity assist maneuvers results in increasingly long, compli-
cated, and inflexible mission profiles [58].14 EP systems are a way to overcome the energetic
barriers inherent in chemical combustion, since they use e.g. high-voltage electric fields (ion
drive) or electromagnetic fields (plasma drive) to ionize and accelerate the propellant (rather
than to burn it), which yields exhaust velocities (and specific impulses) that exceed those
of chemical rockets by approximately one order of magnitude (see figure 2.11) [58]. Thus,
EP systems yield significantly larger ∆V s and/or larger payload ratios and/or smaller launch
vehicles. This way, they can significantly enhance or even enable high-energy missions [58].
At the same time, EP systems permit direct trajectories with reduced flight times, simpler
mission profiles, and extended launch windows. However, compared to chemical propulsion
14 An unfortunate example for this statement is the Rosetta mission, which had been intended to fly to

comet 46P/Wirtanen with three intermediate gravity assist maneuvers (Mars-Earth-Earth) and a very
narrow launch window.
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Figure 2.11 Comparative performance of different propulsion systems concerning exhaust velocity
Ve, thrust acceleration F/mg0, and specific power P/m (from [36])

systems, EP systems have two handicaps: ion and plasma thrusters are not able to produce
high thrust levels, and they require an adequate source of electric energy (several kilowatts
of electric power for several millinewtons of thrust). For interplanetary missions, where high
thrust levels can be compensated with longer burn times, the low thrust level is not a serious
disadvantage. Also, solar and nuclear high energy power sources with an adequate power
to mass ratio have become available today, and the technological readiness of an EP system
for primary propulsion has been successfully demonstrated on NASA’s Deep Space 1 (DS1)
mission15.

Solar cells can be efficiently used to supply power to the electric thrusters, at least within
the inner solar system, since – as for the solar radiation pressure – the solar radiation flux
decreases ∼ 1/r2. Therefore, like solar sailcraft, SEP spacecraft are especially suited for high-
energy missions within the inner solar system. However, unlike solar sailcraft, they do not
have an infinite ∆V -capability, which makes them for example unsuitable for missions where
a non-Keplerian orbit has to be maintained for an extended time.

NEP systems are superior to SEP systems in the outer solar system, where the solar radiation
flux is not sufficient for power production using solar cells. Providing power and thrust that
is independent from solar distance, NEP systems outperform solar sails (and SEP systems) in
the outer solar system, if not only a fast fly-by at the target body but a rendezvous is required.
Also piloted missions, where thrust levels in the order of several hundred newtons are required,
make power generation systems with a power level in the order of several megawatts necessary.
For such power levels, the power to weight ratio of nuclear reactors may be superior to that
of solar cells.

15 and on the ARTEMIS satellite
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2.3.2 NEP System Model

For the NEP system model, the maximum thrust Fmax and the specific impulse Isp are assumed
to be fixed. Then, the maximum propellant mass flow rate ṁP,max (that is required to generate
Fmax) is

ṁP,max =
Fmax

Ve
=

Fmax

Isp · g0
(2.41)

For NEP systems, a throttle factor 0 ≤ χ ≤ 1 is used to control the propellant mass flow rate,
so that one gets

ṁP(χ) = χ · ṁP,max (2.42)

and

F (χ) = χ · Fmax = χ · ṁP,max · Isp · g0 (2.43)

Thus, propellant mass flow rate and thrust vary only with χ. In contrast to solar sails and
SEP systems, the thrust is independent of solar distance, which makes NEP systems especially
suited for outer solar system missions. Using the thrust unit vector f to denote the thrust
direction, one gets

F(χ) = χ · Fmax f = χ · ṁP,max · Isp · g0 f (2.44)

2.3.3 SEP System Model

Typically, ion thrusters are used for SEP systems. Several technical variants of them have
been developed within the last 50 years by competing working groups [20]:

• Radio frequency ion thrusters (RITs, Germany)

• Kaufman- or electron bombardment thrusters (USA and UK)

• Hall effect or stationary plasma thrusters (SPTs, Russia and France)

• Electron cyclotron resonance thrusters (ECRs, Japan)

RITs, as they have been developed in Germany (at the Universiät Gießen in cooperation
with Astrium GmbH, former MBB) since the 1960’s [20], have up to now been used for orbit
raising and station keeping16 but not yet for primary interplanetary propulsion. However, this
might change with a larger RIT, which will become operational within the next few years.17

Within this work, one (section 2.3.3.1) or more (section 2.3.3.2) of NASA’s NSTAR18 thrusters
(Kaufman type) together with a number of SCARLET19 solar array wings are considered
for the SEP system model, since technical data is easily available for both systems (table 2.2),
and since both systems have already been successfully tested on DS1. The NSTAR thruster
16 RIT-10: Fmax ≈ 15mN, Ispmax ≈ 3400 s, lifetime > 8 000 hours (on ARTEMIS) [2, 56]
17 RIT-XT: Fmax ≈ 200mN, Ispmax ≈ 5500 s, lifetime > 15 000 hours [56]
18 NASA Solar Electric Propulsion Technology Applications Readiness Program
19 Solar Concentrator Arrays with Refractive Linear Element Technology
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(figure 2.12) uses a hollow cathode to produce electrons that collisionally ionize xenon. The
Xe+ ions are electrostatically accelerated through a potential of up to about 1300 V and
emitted from the 30-cm thruster through a molybdenum grid. A separate electron beam is
emitted to produce a neutral plasma beam.

Figure 2.12 NASA’s NSTAR ion thruster (from [3])

parameter symbol value

NSTAR ion propulsion system:
minimum PPU input power Pmin 0.5 kW
maximum PPU input power Pmax 2.0 kW
mass mThr 48.0 kg

SCARLET solar array wing:
power production at 1 AU PSAW,0 2.5 kW
mass mSAW 27.7 kg

Table 2.2 Technical data for the NSTAR ion propulsion system and the SCARLET solar array
wing [68]

Within the SEP system model, the spacecraft is made of five components,

1. a number nThr of ion thrusters (mass mThr each)

2. the (empty) propellant tank(s) (mass mTank)

3. propellant (mass mP)

4. a number nSAW of solar array wings (mass mSAW each)

5. the payload (mass mPL, including the spacecraft bus).
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Hence, the total spacecraft mass is

m = nThr ·mThr + mTank + mP + nSAW ·mSAW + mPL (2.45)

2.3.3.1 Single Thruster

The key parameter for the NSTAR thruster is the input power PPPU that is available to the
power processing unit (PPU) of the thruster. This power is delivered by the nSAW solar array
wings. The power that is available to the spacecraft at a distance r from the sun is

P (r) = nSAW · PSAW,0

(r0

r

)κ
(2.46)

where κ < 2 may be used to account for an improved solar array performance at low temper-
atures. If the power PSys is needed to operate the spacecraft systems, the remaining power
that is available to generate thrust is

Pav(r) = P (r)− PSys (2.47)

For SEP systems, a throttle factor 0 ≤ χ ≤ 1 is used to control the PPU power input, so that
one gets

PPPU(χ, r) =


0, if χPav(r) < Pmin

χPav(r), if Pmin ≤ χPav(r) ≤ Pmax

Pmax, if χPav(r) > Pmax

(2.48)

For the NSTAR thruster, according to [97], the following polynomial approximation for
propellant mass flow rate (in mg/s) and thrust (in mN) can be used in the power range
Pmin ≤ PPPU ≤ Pmax:

ṁP(χ, r) = 0.74343 + 0.20951 PPPU + 0.25205 P 2
PPU (2.49a)

F (χ, r) = −3.4318 + 37.365 PPPU (2.49b)

if PPPU is given in kW (figure 2.13). The minimum and maximum mass flow rate and thrust
are then

ṁP,min = 0.91120 mg/s ṁP,max = 2.1707 mg/s
Fmin = 15.251 mN Fmax = 71.298 mN

The specific impulse is variable and depends on solar distance and throttle

Isp(χ, r) =
F (χ, r)

ṁP(χ, r) · g0
(2.50)

The maximum specific impulse is Ispmax = 3231.5 s for PPPU = Popt = 1.8337 kW (see fig-
ure 2.13). Figure 2.14 shows that – contrary to the NEP system model – both the maximum
thrust and the maximum specific impulse of the SEP system decrease rapidly as the space-
craft moves farther from the sun, and drop to zero at the so-called thrust cutoff distance
(at r & 1.83 AU, if PSys = 1kW).



2.3 Electric Propulsion System Models 23

Figure 2.13 Dependence of NSTAR mass flow rate, thrust, and specific impulse on PPU input
power

Figure 2.14 Dependence of NSTAR power levels, thrust, and specific impulse on solar distance
(for κ = 2 and PSys = 1kW)
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2.3.3.2 Clustered Thrusters

Until today, no spacecraft has been built with more than one electric thruster for primary
propulsion. However, for faster transfer times and/or heavier payloads, larger thrust levels
are required. Those could not only be provided by larger thrusters but also by clustering the
currently available thrusters. Another advantage of thruster clustering is the extension of the
operational range of the SEP system to larger solar distances (see appendix B).

2.3.4 Equations of Motion for EP Spacecraft

Within this section, the equations of heliocentric translational motion within the one-body
simulation model and without disturbing forces are derived for the EP spacecraft models.

Using equations (2.42) and (2.44), one gets for NEP spacecraft

r̈ =
1
m

(F(χ) + FG(r)) = χ
Fmax

m
f − µ

r2
er (2.51a)

ṁ = −χṁP,max (2.51b)

and, using the respective equations for ṁP(χ, r) and F(χ, r), for SEP spacecraft

r̈ =
1
m

(F(χ, r) + FG(r)) =
F (χ, r)

m
f − µ

r2
er (2.52a)

ṁ = −ṁP(χ, r) (2.52b)

The orientation of the thrust unit vector f – expressed by the thrust clock angle γ and the
thrust cone angle δ – and the throttle χ constitute now the spacecraft control vector, i.e.
u = (γ, δ, χ).

Resolving equation (2.51a) or (2.52a) along the E-frame unit vectors will give three 2nd order
DEs for r, ϕ, and θ respectively.

Resolving f along the O-frame unit vectors, one obtains

f = cos δer + cos γ sin δet + sin γ sin δeh (2.53)

and after transformation into the E-frame

f = cos δer + cos(γ + ζ) sin δeϕ + sin(γ + ζ) sin δeθ (2.54)

2.3.4.1 Equations of Motion for NEP Spacecraft

By introducing four dimensionless control functions u′1 to u′4, depending only on the three
control variables γ, δ, χ, and the E-O-rotation angle ζ

u′1(δ, χ) = χ cos δ (2.55a)
u′2(γ + ζ, δ, χ) = χ cos(γ + ζ) sin δ (2.55b)
u′3(γ + ζ, δ, χ) = χ sin(γ + ζ) sin δ (2.55c)

u′4(χ) = χ (2.55d)
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and using equation (2.31), the spacecraft acceleration may be written in E-frame components
as:

r̈ = (
Fmax

m
u′1 −

µ

r2
)er +

Fmax

m
u′2eϕ +

Fmax

m
u′3eθ (2.56)

Expressing r̈ in polar coordinates (see appendix A.2), one gets – after some rearrangement –
the DES of motion for NEP spacecraft:

r̈ = rθ̇2 + rϕ̇2 cos2 θ − µ

r2
+

Fmax

m
u′1 (2.57a)

ϕ̈ = −2
ṙϕ̇

r
+ 2ϕ̇θ̇ tan θ +

Fmax

m

u′2
r cos θ

(2.57b)

θ̈ = −2
ṙθ̇

r
− ϕ̇2 sin θ cos θ +

Fmax

m

u′3
r

(2.57c)

ṁ = −u′4ṁP,max (2.57d)

2.3.4.2 Equations of Motion for SEP Spacecraft

For SEP spacecraft, introducing

u′1(δ) = cos δ (2.58a)
u′2(γ + ζ, δ) = cos(γ + ζ) sin δ (2.58b)
u′3(γ + ζ, δ) = sin(γ + ζ) sin δ (2.58c)

u′4(χ) = χ (2.58d)

one obtains likewise the DES of motion for SEP spacecraft:

r̈ = (
F (u′4, r)

m
u′1 −

µ

r2
)er +

F (u′4, r)
m

u′2eϕ +
F (u′4, r)

m
u′3eθ (2.59)

r̈ = rθ̇2 + rϕ̇2 cos2 θ − µ

r2
+

F (u′4, r)
m

u′1 (2.60a)

ϕ̈ = −2
ṙϕ̇

r
+ 2ϕ̇θ̇ tan θ +

F (u′4, r)
m

u′2
r cos θ

(2.60b)

θ̈ = −2
ṙθ̇

r
− ϕ̇2 sin θ cos θ +

F (u′4, r)
m

u′3
r

(2.60c)

ṁ = −ṁP(u′4, r) (2.60d)
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Within this chapter, the low-thrust trajectory optimization problem is characterized and it is
shown how low-thrust trajectory optimization problems are traditionally solved by using local
spacecraft steering laws and numerical optimal control methods. Within section 3.1, the low-
thrust trajectory optimization problem is formally stated, generally, and from the perspective
of optimal control theory. Special emphasis is placed on the potential objectives for trajectory
optimization and on the differences between trajectory optimization for high-thrust and low-
thrust propulsion systems. It is shown that low-thrust trajectory optimization is equivalent
to the search for the optimal spacecraft control function in infinite function space, which is a
very difficult problem that can only be solved approximately through discretization. Within
section 3.3, a short survey of traditional trajectory optimization methods is presented. All
those methods can be generally classified as local trajectory optimization methods, where the
term optimization does not mean ”finding the best solution” but rather ”finding a solution”.
Their main drawback is the dependence of their convergence behavior on an adequate initial
guess of the solution, which is often hard to find. Even if convergence is achieved, a local
optimum is typically found, which is close to the initial guess that is rarely close to the
(unknown) global optimum. The initial guess is typically generated through the (subsequent
or parallel) application of local steering laws, that give the locally optimal thrust direction
to change some specific osculating1 orbital element of the spacecraft with a maximum rate.
This is why local spacecraft steering laws are addressed already in section 3.2. Finally, within
section 3.4, it is sketched how a smart global trajectory optimization should look like.

3.1 The Low-Thrust Trajectory Optimization Problem

In general, a spacecraft trajectory may be defined as an image of some time interval [t0, tf ] in
some six-dimensional spacecraft state space2 {xSC} ⊂ R6. A trajectory is obtained by using
some spacecraft control function U that maps some input domain3 onto a spacecraft
control vector u ∈ Rnu , which completely defines the magnitude and the direction of
the spacecraft’s thrust force F. The trajectory, which is denoted by xSC[t] or xSC[t0, tf ], is
then obtained from the (numerical) integration of the spacecraft’s equation of motion,4

ẋSC(t) = G(xSC(t),u(t)), G : R6+nu 7→ R6, which is the dynamic constraint.

3.1.1 Objectives for Trajectory Optimization

The optimality of spacecraft trajectories may be defined according to several objectives, e.g.:

(1) the transfer time is minimal for a given propellant and payload mass (i.e. for a given
launch mass)

1 the instantaneous orbital element that would be obtained if the thrust was turned off
2 xSC is usually the position rSC ∈ R3 plus the velocity ṙSC ∈ R3 in some frame of reference, or some set of

orbital elements E ∈ R6 (see appendix A)
3 typically the same time interval [t0, tf ]
4 if xSC = (rSC, ṙSC), the DES of motion with three DEs of 2nd order can be transformed into an equivalent

DES with six DEs of 1st order
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(2) the required propellant mass is minimal for a given transfer time and launch mass5

(3) the required propellant mass is minimal for a given transfer time and payload mass6

Even for solar sailcraft, which do not consume any propellant, several objectives may be
defined for trajectory optimization, e.g.:

(1) the transfer time is minimal for a given solar sail performance

(2) the required solar sail performance is minimal for a given transfer time

In general, spacecraft trajectories have to be optimized with respect to more than one objec-
tives, e.g. transfer time and propellant consumption and mission objectives. In practice, such
multi-objective optimization problems are usually reduced to single-objective problems.
This can be done in two ways [42]:

• only one objective is subject to optimization. The other objectives are introduced as
constraints, e.g. ”maximize the payload mass for a given maximum transfer time and
launch mass”.

• each objective is associated with a weighting factor and the weighted objectives are
combined into a single scalar value. This reduction introduces new parameters in the
form of weighting factors. To set a proper combination of values for them, one must
be familiar with the relationship between the different objectives to obtain the desired
results. Hence, the determination of suitable weighting factors can become an optimiza-
tion problem of its own.

The result of such objective reduction techniques is a single solution, that does typically
not reflect the possible compromises between the different objectives. Probably the best
way to tackle multi-objective trajectory optimization problems is to apply the concept of
PARETO-optimality. According to this concept, every trajectory is Pareto-optimal that
is not dominated by some other trajectory, which is better in all objectives. Thus, a Pareto-
optimal trajectory can only be improved with respect to some single objective at the expense
of at least one other objective.7

3.1.2 High-Thrust and Low-Thrust Trajectory Optimization

For spacecraft with high thrust like chemical rockets, the problem of finding optimal inter-
planetary trajectories can be solved relatively easily, as long as no gravity assist maneuvers
are required, since only a few thrust phases are necessary (see example below). These thrust
phases are very short compared to the transfer time, so that they can be approximated by

5 this maximizes the payload mass
6 this also minimizes the launch mass and thus the launcher requirements
7 Multi-objective trajectory optimization that relies on the concept of Pareto-optimality was done by

Hartmann et al. [42], where a ”Pareto Genetic Algorithm” was applied in combination with NASA’s
”Solar Electric Propulsion Trajectory Optimization Program” (SEPTOP) to optimize Earth-Mars trajec-
tories for SEP spacecraft with respect to transfer time and payload mass.
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singular events that change the spacecraft’s velocity ṙSC instantaneously while its position rSC

remains fixed.

Example: Let A be the initial body and B the target body. For an interplanetary fly-by trajectory,

only a single thrust impulse at A (∆VA) is required, so that the solution space of the problem

has only three dimensions (e.g. thrust magnitude and two directional angles). In the case of an

interplanetary rendezvous problem, another thrust impulse at B (∆VB) is necessary to ”stop” the

spacecraft. However, this thrust impulse is completely defined by the velocity vector at B, so that

no additional optimization parameters are added to the problem. For the rendezvous problem,

an intermediate orbit cranking maneuver (OCM) that adjusts the spacecraft’s inclination in the

intersection line of A’s and B’s orbital plane even reduces the dimension of the optimization

problem by one. In this case, ∆VA is within the orbital plane of A, the magnitude and direction

of ∆VOCM are completely defined by A’s and B’s orbital plane and by the spacecraft’s velocity

at the OCM-point, and ∆VB is again defined by the velocity vector at B.

Interplanetary low-thrust missions require the propulsion system to operate for a significant
part of the transfer to generate the necessary velocity increment ∆V . Consequently, the
thrust vector F(t) is a continuous function of time and the dimension of the solution space is
infinite. F(t) is manipulated through an nu-dimensional vector of control variables u(t) (e.g.
throttle χ and two directional angles like γ and δ) that is also a continuous function of time.
Thus, the trajectory optimization problem is equivalent to the problem of finding the optimal
spacecraft control function U? in infinite-dimensional function space. This problem can
not be solved except in very rare cases [77]. What can be solved at least numerically, however,
is a discrete approximation of the problem (see section 3.1.3.2).

3.1.3 Low-Thrust Trajectory Optimization from the Perspective of Opti-
mal Control Theory

Within this work, three types of trajectory optimization problems are considered: ren-
dezvous problems, fly-by problems, and orbit transfer problems. Within this section,
these problems are stated from the perspective of optimal control theory, both in continuous
and discrete time. Later on (section 4.1), it will be shown that these problems may also
be formulated within a different context: from the perspective of artificial intelligence and
machine learning.

3.1.3.1 Problem Formulation in Continuous Time

In terms of optimal control theory, the rendezvous problem RV , the fly-by problem FB, and
the orbit transfer problem OT can be stated as follows:

Rendezvous problem (RV ) from the perspective of optimal control theory:
Find a spacecraft control function U : t ∈ [t0, tf ] 7→ u ∈ Rnu , which forces the state xSC(t) =
(rSC(t), ṙSC(t)) of the spacecraft from its initial value xSC(t0) to the state xT(t) of the target
body, along a trajectory that obeys the dynamic constraint ẋSC(t) = G(xSC(t),u(t)) and the
terminal constraint xSC(tf ) = xT(tf ), and at the same time minimizes some cost function J .
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Fly-by problem (FB) from the perspective of optimal control theory:
Find a spacecraft control function U : t ∈ [t0, tf ] 7→ u ∈ Rnu , which forces the position rSC(t)
of the spacecraft from its initial value rSC(t0) to the position rT(t) of the target body, along
a trajectory that obeys the dynamic constraint ẋSC(t) = G(xSC(t),u(t)) and the terminal
constraint rSC(tf ) = rT(tf ), and at the same time minimizes some cost function J .

Orbit transfer problem (OT ) from the perspective of optimal control theory:
Find a spacecraft control function U : t ∈ [t0, tf ] 7→ u ∈ Rnu , which forces the spacecraft’s
set of orbital elements ZSC(t) that defines the size, shape, and orientation of the orbit (e.g.
ZSC(t) = (a(t), e(t), ι(t),Ω(t), ω(t)))8 from its initial value ZSC(t0) to the respective set of
orbital elements ZT(t) of the target body, along a trajectory that obeys the dynamic constraint
ẋSC(t) = G(xSC(t),u(t)) and the terminal constraint ZSC(tf ) = ZT(tf ), and at the same time
minimizes some cost function J .

The resulting state function x?
SC[t] is the optimal trajectory for the given problem. So, all the

trajectory optimization problems stated above are actually problems of finding the optimal
spacecraft control function U?. Both t0 and tf can be fixed or free, so that they are part of
the optimization problem in the latter case.

If the propellant mass mP is to be minimized,

JmP =
∫ tf

t0

ṁPdt = mP(tf )−mP(t0) (3.1)

is an appropriate cost function. If the transfer time T is to be minimized,

JT =
∫ tf

t0

dt = tf − t0 = T (3.2)

is an appropriate cost function.9

3.1.3.2 Problem Formulation in Discrete Time

Generally, problems RV , FB, and OT can not be solved analytically. This makes a discrete
approximation of the problem necessary, which converts the infinite-dimensional problem into
a finite-dimensional problem by using some numerical discretization method. If the maximum
transfer time interval [t0, tf,max] is cut into τ finite elements t̄0 = t0, . . . , t̄f = tf ≤ t̄τ = tf,max

and U : {t̄0, . . . , t̄τ−1} 7→ Rnu is the discrete spacecraft control function, the optimal solution of
the approximate problem is a nuf -dimensional subspace in the nuτ -dimensional search space,
which is usually still a very high-dimensional space. The approximate trajectory optimization
problem is then to find an optimal spacecraft control vector history u?[t̄] ∈ Rnuτ , which
gives the optimal trajectory x?

SC[t] = x?
SC[t̄0, t̄f ].10 Through discretization, the problem of

finding U? as an optimal function in infinite-dimensional function space reduces to the problem
of finding the optimal control vector history u?[t̄] in a finite-dimensional parameter space. The
discrete rendezvous problem (RV ) for example may now be stated as follows:

8 of course any other set of equivalent orbital elements may be used alternatively
9 Propellant mass minimization and transfer time minimization would be equivalent if ṁP was constant.
10 Is is to note that only the spacecraft control vector function is discretized, whereas the trajectory is still

continuous.
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Rendezvous problem (RV ) from the perspective of optimal control theory:
Find a spacecraft control vector history u[t̄] (t̄ ∈ {t̄0, . . . , t̄f−1}), which forces the state
xSC(t) = (rSC(t), ṙSC(t)) of the spacecraft from its initial value xSC(t̄0) to the state xT(t̄) of the
target body, along a trajectory that obeys the dynamic constraint ẋSC(t) = G(xSC(t),u(t))
and the terminal constraint xSC(t̄f ) = xT(t̄f ), and at the same time minimizes some cost
function J .

The discrete fly-by problem (FB) and the discrete orbit transfer problem (OT ) may be stated
likewise. The resulting state function x?

SC[t] is the optimal trajectory for the given problem.
So, all three trajectory optimization problems are actually problems of finding the optimal
control vector history u?[t̄]. The cost functions for the propellant mass optimization problem
and the transfer time optimization problem may be defined as before.

3.2 Spacecraft Steering Using Local Steering Laws

3.2.1 Lagrange’s Planetary Equations

A local steering law (LSL) is an equation (or algorithm) that gives the locally optimal
thrust direction that changes some specific osculating orbital element of spacecraft with a
maximum rate. To obtainin LSLs, Lagrange’s planetary equations in Gauss’ form for the
orbital reference frame O (see appendix A.3) may be used, since these equations describe
the rate of change of a body’s osculating orbital elements (see appendix A.4) due to some
(propulsive and/or disturbing) acceleration (or force). As it is shown in [13], this set of
equations can be written as11

ȧ =
2a2

h

(
e sin far +

p

r
at

)
(3.3a)

ė =
1
h
{p sin far + [(p + r) cos f + re] at} (3.3b)

ι̇ =
r cos(ω + f)

h
ah (3.3c)

Ω̇ =
r sin(ω + f)

h sin ι
ah (3.3d)

ω̇ =
1
eh

[−p cos far + (p + r) sin fat]−
r sin(ω + f) cos ι

h sin ι
ah (3.3e)

ḟ =
h

r2
+

1
eh

[p cos far − (p + r) sin fat] (3.3f)

where ar, at, and ah are the acceleration components along the O-frame unit vectors, h =√
µa(1− e2) is the orbital angular momentum per spacecraft unit mass, and p = h2/µ is the

semilatus rectum of the orbit.

11 The variational equation for either the mean anomaly M or the eccentric anomaly E may be used in place
of equation (3.3f).
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3.2.2 Pure Local Steering Laws for Spacecraft

3.2.2.1 Changing the Orbital Elements with a Maximum Rate

Equations (3.3) are now used to determine a set L of local steering laws, which change the
osculating orbital elements of spacecraft with a maximum rate. Let Z = (a, e, ι, Ω, ω) denote
the vector of the orbital elements except the anomaly.12 Then, the variational equation for
some particular orbital element Zi∈{1,...,5} has the form

Żi = kZi,r · ar + kZi,t · at + kZi,h · ah = kZi · a

where kZi = (kZi,r, kZi,t, kZi,h) is a vector of functions of the spacecraft’s actual state, and
a = (ar, at, ah) is the spacecraft’s acceleration vector due to propulsive and/or disturbing
forces. It is clear that in order to change Zi with a maximum rate, the acceleration along kZi

or −kZi must be maximized. Thus, the set L consists of 10 LSLs Lj∈{1,...,10} (i ∈ {1, . . . , 5}):

Li := maximize Żi ⇔ a �� kZi

L5+i := maximize −Żi ⇔ a �� kZi

(3.4)

Example: L6 = L5+1 := maximize −Ż1 = maximize −ȧ.

It will become very convenient to introduce for each LSL a direction unit vector dLj in a
way that dLi = kZi/|kZi | and dL5+i = −kZi/|kZi |.

3.2.2.2 Adjusting the Orbital Elements with a Maximum Rate

In the same way, a set Q of local steering laws Qi∈{1,...,5} is defined, so that each Qi gives a
direction, along which the thrust force has to be maximized in order to minimize the difference
between some specific orbital element Zi and its desired value Z̃i (which can be smaller or
larger, e.g. the respective orbital element of the target body) with a maximum rate:

Qi :=
{

Li

L5+i

, if Z̃i ≥ Zi

, if Z̃i < Zi
(3.5)

and

dQi :=
{

dLi

dL5+i = −dLi

, if Z̃i ≥ Zi

, if Z̃i < Zi
(3.6)

3.2.3 Blended Local Steering Laws for Spacecraft

A close look at equations (3.3) reveals some interesting features for spacecraft steering:

• only in-plane forces change the semi-major axis a, the eccentricity e, and the true
anomaly f of the orbit

12 The reason for this exclusion is given in appendix C.
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• only out-of-plane forces change the inclination ι and the ascending node Ω of the orbit

• any force changes the orbit’s longitude of perihelion ω

• any force changes at least three orbital elements at the same time

• any force that is neither within the orbit plane nor perpendicular to it changes all orbital
elements at the same time

Thus, if a pure LSL is used to change some specific orbital element, the others may change in
an unwanted way. Consequently, it is not possible to adapt subsequently one orbital element
after the other until some target body or orbit is reached. To change more than one orbital
element at the same time in the desired direction (i.e. to a larger or smaller value), it is
apparent to ”blend” the pure local steering laws in L or Q so that they constitute a set ML
or MQ of blended steering laws. For that reason, a vector cL ∈ R10 or cQ ∈ R5 of weight
factors (called steering law weight vector) may be defined in a way that each steering law
weight vector defines a blended local steering law ML(cL) ∈ML or MQ(cQ) ∈MQ by giving
the locally optimal direction unit vector

dML(cL) =

10∑
j=1

cLjdLj∣∣∣∣∣ 10∑
j=1

cLjdLj

∣∣∣∣∣
or dMQ(cQ) =

5∑
i=1

cQidQi∣∣∣∣ 5∑
i=1

cQidQi

∣∣∣∣ (3.7)

Since it is often not relevant, whether the pure LSLs are taken from L or from Q, one can
write less formally that a blended LSL M(c) ∈ M is defined by a steering law weight vector
c that gives the direction unit vector d from some set of pure LSLs.

3.2.4 Locally Optimal Spacecraft Steering

3.2.4.1 Locally Optimal Steering for EP Spacecraft

For EP spacecraft, where the thrust vector can be directed into any desired direction, the
thrust clock angle γ∗ and thrust cone angle δ∗ of the locally optimal thrust unit vector f∗ are
the clock angle γ̃ and the cone angle δ̃ of the direction unit vector d:

γ∗ = γ̃ = arctan(dh, dt) (3.8a)

δ∗ = δ̃ = arccot

 dr√
d2

t + d2
h

 (3.8b)

where arctan(y, x) is an extended arcustangens, which gives the angle φ such that y = sin φ
and x = cos φ.

3.2.4.2 Locally Optimal Steering for Solar Sailcraft

It was observed in section 2.2.5 that the thrust vector of solar sailcraft can not be directed
into any desired direction but is constrained to lie on the surface of a ”bubble” that is directed
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away from the sun. Therefore, the locally optimal sail clock angle α∗ and sail cone angle β∗

are not identical to the locally optimal thrust clock angle γ∗ and thrust cone angle δ∗. For the
standard SRP force model (see section 2.2.3.4), α∗ and β∗ can not be calculated analytically
from γ∗ and δ∗, since the Q(β)-expression can not be resolved for β . However, at least for the
simplified SRP force model (see section 2.2.3.5) they can be expressed analytically. Resolving
f and d along the O-frame unit vectors, one obtains

f = cos δer + cos γ sin δet + sin γ sin δeh (3.9)

d = cos δ̃er + cos γ̃ sin δ̃et + sin γ̃ sin δ̃eh (3.10)

and for the simplified SRP force model

f = n = cos βer + cos α sinβet + sinα sin βeh (3.11)

so that the SRP force component along d is

Fd = λ
µm

r2
cos2 β(n · d) =

= λ
µm

r2
cos2 β

[
cos β cos δ̃ + cos α sinβ cos γ̃ sin δ̃ + sinα sinβ sin γ̃ sin δ̃

] (3.12)

Setting the derivative of Fd with respect to α to zero yields the locally optimal sail clock
angle α∗

∂Fd

∂α

!= 0 = λ
µm

r2
sinβ cos2 β sin δ̃(− sinα cos γ̃ + cos α sin γ̃)

⇒ − sinα∗ cos γ̃ + cos α∗ sin γ̃ = 0
⇔ sin(γ̃ − α∗) = 0
⇒ α∗ = γ̃ (3.13)

Calculating the second order derivative ∂2Fd
∂α2 , it can be shown that this is truly a maximum.

Inserting this result into equation (3.12) yields

Fd = λ
µm

r2
cos2 β

[
cos β cos δ̃ + cos2 γ̃ sinβ sin δ̃ + sin2 γ̃ sin β sin δ̃

]
= λ

µm

r2
cos2 β

[
cos β cos δ̃ + sinβ sin δ̃

] (3.14)

Setting now the derivative of Fd with respect to β to zero yields the locally optimal sail cone
angle β∗

∂Fd

∂β

!= 0 = λ
µm

r2

[
−3 cos2 β sinβ cos δ̃ + (cos3 β − 2 sin2 β cos β) sin δ̃

]
⇒ −3 cos2 β∗ sinβ∗ cos δ̃ + cos3 β∗ sin δ̃ − 2 sin2 β∗ cos β∗ sin δ̃ = 0

⇒ cot2 β∗ − 3 cot δ̃ cot β∗ − 2 = 0

⇒ β∗ = arccot

(
3
2

cot δ̃ ±
√

9
4

cot2 δ̃ + 2

)
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under the condition that δ̃ 6∈ {0, π} (⇒ β∗ 6∈ {0, π
2 }). Calculating the second order derivative

∂2Fd
∂β2 , it can be shown that

β∗ = arccot

(
3
2

cot δ̃ +

√
9
4

cot2 δ̃ + 2

)
(3.15)

for a maximum, where 0 < δ̃ < π. For the two limiting cases, one gets limδ̃→0 β∗ = 0 and
limδ̃→π β∗ = π

2 . Inserting equations (3.8) into equation (3.13) and (3.15), one gets

α∗ = arctan(dh, dt) (3.16a)

β∗ = arccot

3
2

dr√
d2

t + d2
h

+

√
9
4

d2
r

d2
t + d2

h

+ 2

 (3.16b)

for the locally optimal sail clock and cone angle.

3.3 Traditional Trajectory Optimization Methods

Traditionally, low-thrust trajectories are optimized by the application of numerical optimal
control methods that are based on the calculus of variations. These methods can be divided
into direct methods such as nonlinear programming (NLP) methods and indirect meth-
ods such as neighboring extremal methods and gradient methods. Since the theoretical basis
of those methods is mathematically extensive and neither necessary to appraise their draw-
backs nor to understand the trajectory optimization method that is elaborated within this
work, the reader is referred to [15], [77], and [88] for a comprehensive survey of both direct
and indirect trajectory optimization methods. The decisive point is that all those approaches
can be generally classified as local trajectory optimization methods (LTOMs), where
the term optimization does not mean ”finding the best solution” but rather ”finding a so-
lution” [92]. Prior to optimization, the NLP methods and the gradient methods require an
initial guess for the control vector history u[t̄], whereas the neighboring extremal methods
require an initial guess for the starting adjoint vector of Lagrange multipliers λλλ(t̄0) (costate
vector) [88]. Figure 3.1 illustrates how trajectory optimization that is based on LTOMs is
usually performed.

First, the initial body, the target body, and the initial conditions (launch date t0, velocity
vector v∞ = ṙSC(t0)− ṙEarth(t0), etc.) are chosen according to the mission objectives and the
launcher restrictions. Although those parameters are crucial for mission performance, they are
typically chosen according to an expert’s judgment and are not part of the actual optimization
process. After that, the initial guess for the control vector history u[t̄] is generated: for this
reason, a trajectory simulation is carried out, where different (pure or blended) local steering
laws are subsequently applied. The switching between the LSLs is done according to the
expert’s judgment. The objective is to come as close as possible to the target body, so that
in the next step a LTOM is able to converge. If the generated trajectory might not be
used as an initial guess, the switching between the LSLs has to be refined and – if several
trial-and-error cycles yield no acceptable result – the initial conditions have to be modified
(e.g. different launch date or higher hyperbolic excess velocity). All steps require frequent
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Figure 3.1 Traditional low-thrust trajectory optimization using local trajectory optimization meth-
ods

manual interactions. If the trajectory comes finally close enough to the target body, it is
taken as the initial guess for the LTOM. If convergence could not be achieved, a new initial
guess has to be conceived and the above steps have to be repeated using again a different
LSL switching and/or different launch conditions. If the LTOM converges, a locally optimal
trajectory is found, which is typically close to the initial guess that is rarely close to the
global optimum. The convergence behavior of LTOMs (especially of the indirect methods)
is very sensitive to the initial guess. Similar initial guesses often produce very dissimilar
optimization results [51, 42], so that trajectory optimization becomes sometimes ”more art
than science” [42]. This way, the search for a good trajectory usually turns into a time-
consuming task.

The drawbacks of LTOMs can be summarized as follows:

1. LTOMs can only be applied by an expert in astrodynamics and optimal control theory.

2. LTOMs require an adequate initial guess prior to optimization, which is often hard to
find.

3. The convergence behavior of LTOMs is often very sensitive to the initial guess. Similar
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initial guesses often yield dissimilar optimization results, so that the initial guess can
not be improved iteratively.

4. LTOMs run often into a local optimum that is close to the initial guess (which is typically
far from the global optimum).

5. Trajectory optimization using LTOMs is often very time consuming, since it requires
frequent manual interactions and thus practically permanent attendance.

3.4 Concept of a Smart Global Trajectory Optimization Method

Emanating from the drawbacks of LTOMs, a smart global trajectory optimization method
(GTOM) is sought that runs without an initial guess and without the permanent attendance
of an expert in astrodynamics and optimal control theory, as it is sketched in figure 3.2.
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Figure 3.2 Smart low-thrust trajectory optimization using a global trajectory optimization method



4 Trajectory Optimization Using
Evolutionary Neurocontrol

It was shown in the last chapter that the problem of searching an optimal spacecraft trajectory
x?

SC[t] is equivalent to the problem of searching an optimal spacecraft control function U?.
Usually, optimal control methods that are based on the calculus of variations are employed
to solve this kind of problems. Prior to optimization, they require an initial guess of the
solution, which is typically generated through the (subsequent or parallel) application of
local spacecraft steering laws.

Within this chapter, spacecraft trajectory optimization is attacked from a perspective differ-
ent to that of optimal control: the perspective of artificial intelligence and machine learn-
ing. Within this context, a trajectory can be regarded as the result of an explicitly not
time-dependent spacecraft steering strategy S that maps the problem relevant variables (e.g.
the spacecraft state xSC and the target body state xT) onto some spacecraft control vector,
S : {xSC,xT} ⊂ R12 7→ {u} ⊂ Rnu (section 4.1). This way, the problem of searching the opti-
mal spacecraft trajectory is equivalent to the problem of searching (or ”learning”) the optimal
spacecraft steering strategy S?. An artificial neural network (ANN) may be used as a so-called
neurocontroller (NC) to implement such spacecraft steering strategies. It can be regarded as
a parameterized function N (the network function) that is – for a given network topology –
completely defined by the internal parameter vector πππ ∈ Rnπ of the network. Therefore, each
πππ defines a steering strategy Sπππ. The problem of searching the optimal spacecraft trajectory
is thus equivalent to the problem of searching the optimal parameter vector πππ? for a given
neurocontroller. Evolutionary algorithms (EAs) that work on a population of strings can
be used for finding the optimal network parameters, since the parameters can be mapped
onto a string ξ (also called chromosome or individual, section 4.3). The trajectory optimiza-
tion problem is solved, when the optimal chromosome ξ? is found. Figure 4.1 sketches the
subsequent transformations of the optimal chromosome into the optimal trajectory.�

�
�
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=
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Figure 4.1 From the optimal chromosome to the optimal trajectory
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A neurocontroller that employs an evolutionary algorithm for ”learning” (or ”breeding”) the
optimal control strategy might be called evolutionary neurocontroller (ENC, section 4.4 and
4.5).

4.1 Spacecraft Steering Using Steering Strategies

4.1.1 Machine Learning

Within the field of artificial intelligence, an immense variety and complexity of learning prob-
lems, learning methods, and learning systems has evolved, overlapping and poorly system-
atized. This makes the formulation of a universally accepted definition of machine learning
difficult. According to De Jong [30], a common denominator of most learning systems is
their capability for making structural changes to themselves over time with the intent of im-
proving their performance on tasks (the performance being defined by their environment),
discovering and subsequently exploiting interesting concepts, or improving the consistency
and generality of internal knowledge structures.

One important and difficult class of learning problems are reinforcement learning (RL)
problems, where the optimal behavior of the learning system (called agent), as it is defined
by an associative mapping from situations to actions S : X 7→ A,1 has to be learned
solely through interaction with the environment, which gives an immediate or delayed eval-
uation2 (reward or reinforcement) J of the agent’s behavior [48, 89]. Within this work,
the associative mapping – that is typically called policy in RL-related literature – is termed
strategy. The optimal strategy S? of the agent is defined as the one that maximizes the
sum of positive reinforcements and minimizes the sum of negative reinforcements over time.
If, given a situation X ∈ X , the agent tries an action A ∈ A and the environment immedi-
ately returns a scalar evaluation J(X, A) of the (X, A) pair, one is faced with an immediate
reinforcement learning problem. A more difficult class of learning problems are delayed
reinforcement learning problems, where the environment gives only a single scalar evalua-
tion, collectively for (X, A)[t], a sequence of (X, A) pairs occurring in time during the agent’s
operation. Delayed reinforcement learning problems arise commonly in the optimal control
of dynamical systems [48].

4.1.2 Low-Thrust Trajectory Optimization from the Perspective of Ma-
chine Learning

From the perspective of machine learning, a spacecraft steering strategy may be defined
as an associative mapping S that gives the actual spacecraft control vector u from some input
vector X ∈ X that comprises the variables that are important for the optimal steering of the
spacecraft (the state of the relevant environment, as expressed for example by the spacecraft
state xSC and the target body state xT), S : X = {xSC,xT} 7→ U = {u}.3 The trajectory can

1 X is called state space and A is called action space
2 This evaluation is analogous to the cost function in optimal control theory. To emphasize this fact, it will

be denoted by the same letter, J . However, one must have in mind that the cost function is subject to
minimization, whereas this evaluation is subject to maximization.

3 where the action space A is now the spacecraft control vector space U
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then be regarded as the result of the spacecraft steering strategy. The search for the optimal
strategy is a delayed reinforcement problem, since such a strategy can only be evaluated ex
post, when the trajectory is realized and a reward can be given according to the fulfillment
of the optimization objective(s). The rendezvous, the fly-by, and the orbit transfer problem
may now be reformulated:

Rendezvous Problem (RV ) from the perspective of machine learning:
Find a spacecraft steering strategy S, which forces the state xSC(t) = (rSC(t), ṙSC(t)) of the
spacecraft from its initial value xSC(t0) to the state xT(t) of the target body, along a trajec-
tory that obeys the dynamic constraint ẋSC(t) = G(xSC(t),u(t)) and the terminal constraint
xSC(tf ) = xT(tf ), and at the same time maximizes some reward J .

Fly-By Problem (FB) from the perspective of machine learning:
Find a spacecraft steering strategy S, which forces the position rSC(t) of the spacecraft from
its initial value rSC(t0) to the position rT(t) of the target body, along a trajectory that obeys
the dynamic constraint ẋSC(t) = G(xSC(t),u(t)) and the terminal constraint rSC(tf ) = rT(tf ),
and at the same time maximizes some reward J .

Orbit Transfer Problem (OT ) from the perspective of machine learning:
Find a spacecraft steering strategy S, which forces the spacecraft’s set of orbital elements
ZSC(t) that defines the size, shape, and orientation of the orbit (e.g. ZSC(t) = (a(t), e(t), ι(t),
Ω(t), ω(t))) from its initial value ZSC(t0) to the respective set of orbital elements ZT(t) of the
target body along a trajectory that obeys the dynamic constraint ẋSC(t) = G(xSC(t),u(t)) and
the terminal constraint ZSC(tf ) = ZT(tf ), and at the same time maximizes some reward J .

The resulting steering strategy S? is the optimal spacecraft steering strategy for the given
problem. So, all the trajectory optimization problems stated above are actually problems
of finding the optimal spacecraft steering strategy S?. A very obvious way to implement
spacecraft steering strategies is to use artificial neural networks, as they have been successfully
applied to ”learn” the desired associative mapping for a wide range of problems

4.2 Artificial Neural Networks

4.2.1 What are Artificial Neural Networks?

Being inspired by the processing of information in animal nervous systems, ANNs are a
computability paradigm that is alternative to conventional serial digital computers. ANNs
are massively parallel, analog, fault tolerant, and adaptive [18, 75, 76]. They are composed
of processing elements (called neurons) that model the most elementary functions of the
biological neuron. Linked together, those elements show some characteristics of the brain like
learning from experience, generalizing from previous examples to new ones, and extracting
essential characteristics from inputs that contain noisy and/or irrelevant data, so that they are
relatively insensitive to minor variations in its input to produce consistent output. That is why
professionals from many diverse disciplines (e.g. engineering, biology, economics, psychology)
are intrigued by their possibilities and apply them within their fields of research.

Since the neurons of an ANN can be modelled and connected in many ways, ANNs exist
in a wide variety. According to the connectivity of the neurons, ANNs can be divided into
feedforward ones and into recurrent ones. An ANN is a feedforward one, if there exists
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a numbering method, which numbers all neurons in a way that there is no connection from
a neuron with a number i to a neuron with a number j < i. An ANN is a recurrent one,
if such a numbering method does not exist. Within this work, only feedforward ANNs have
been considered.

4.2.2 How do Artificial Neural Networks Work?

Typically, feedforward ANNs have a layered topology, where the set N of neurons is divided
into ` subsets N1, . . . ,N` (called neuron layers) in a way that only connections from Nk−1

go to Nk for all k ∈ {2, . . . , `}. N1 is called input layer and has n1 input neurons, which
receive the network’s input X ∈ X ⊆ Rn1 . N` is called output layer and has n` output
neurons, which provide the network’s output Y ∈ Y ⊂ Rn` . All other layers/neurons are
called hidden layers/neurons (if ` > 2).

Example: Figure 4.2 shows an ANN with ` = 3 layers, n1 = 3 input neurons, one hidden layer

with n2 = 2 hidden neurons and n3 = 1 output neuron (3-2-1-network).

Figure 4.2 Layered feedforward artificial neural network

Each neuron i ∈ Nk∈{2,...,`} has a so-called activation function that maps from the neuron’s
weighted input values onto a single output value. The most commonly used activation function
for feedforward networks is the sigmoid sγ : R 7→ (0, 1), defined by

sγ(x) =
1

1 + e−x/γ
, (4.1)

where the constant γ, called temperature parameter, defines the slope of the function
(see figure 4.3). Using the sigmoid activation function sγ , a layered feedforward ANN can be
described as a directed graph in which each node (neuron) i in a layer Nk∈{2,...,`} performs
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Figure 4.3 The sigmoid sγ(x) for different values of γ

the function

yi =
1

1 + e−(
∑

j wijyj−θi)/γi
, (4.2)

where yi ∈ (0, 1) is the output of neuron i, the yj ∈ (0, 1) are the output values of the neurons
j in the previous layer Nk−1, the wij ∈ R are the connection weights between the neurons
j and neuron i, and θi ∈ R is the so-called bias (or threshold) of neuron i. In the input
layer N1, each neuron i gives directly one component of the network’s input values Xi ∈ R:

yi = Xi (4.3)

Layered feedforward ANNs with a sigmoid activation function can be regarded as a continuous
parameterized function, called the network function

Nπππ : X ⊆ Rn1 7→ Y ⊆ (0, 1)n` (4.4)

that maps from a set of inputs X onto a set of outputs Y. The parameter vector πππ =
(π1, . . . , πnπ) of the network function comprises the nπ internal parameters of the ANN (the
connection weights wij , the biases θi, and the temperature parameters γi of the neurons).

Example: For the ANN in figure 4.2, nπ = 14, π1 = w41, π2 = w42, π3 = w43, π4 = θ4,

π5 = γ4, . . . , π14 = γ6.

4.2.3 Learning in Artificial Neural Networks

Using Kolmogorov’s theorem, it can be proved that any continuous function A can be
represented exactly by a finite network of computing units, though the general learning
problem of determining the values for a given network’s parameters is NP-complete [76].
In simple terms, this means that it is very improbable that an algorithm exists that is able
to solve the problem in finite time, if the number of unknown variables gets large, though
a guessed solution can be checked in finite time. However, in most practical cases no exact
function representation is required but a finite approximation error is accepted for the network
function. Using an adequate learning algorithm, an approximate solution for the problem
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can be found in reasonable time. The learning problem consists of finding the optimal
ANN parameter vector πππ so that the network function Nπππ approximates the given function
A as closely as possible. A is usually not given explicitly but only implicitly through some
exemplary input-output pairs. However, using this training set, the network error (i.e. the
difference between the actual output and the correct output) can be measured and utilized
to learn the optimal network function N? := Nπππ? by adapting the network parameter vector
πππ in a way that minimizes the network error. For this kind of learning problems, a variety
of learning algorithms have been developed, the backpropagation algorithm – a gradient-
based method – being the most widely known [76]. If the ANN has learned the function A, it
may not only map the training set correctly but also input-output pairs that have not been
a part of the training set (generalization).

Learning algorithms for ANNs that rely on a training set fail for delayed reinforcement prob-
lems, where the correct output for a given input is not known. A very obvious way to
determine N? in such cases are evolutionary algorithms.

4.3 Evolutionary Algorithms

4.3.1 What are Evolutionary Algorithms?

The term evolutionary algorithm is an umbrella term for computer-based probabilistic
search procedures that use computational models of genetics and natural evolution as key
elements in their design and implementation. The best known algorithms in this class include
genetic algorithms (GAs, see Holland [43] and Goldberg [40]), evolution strategies (see
Rechenberg [74] and Schwefel [83]), evolutionary programming (see Fogel [35]), and
genetic programming (see Koza [49]). Sometimes also the term evolutionary computation
(EC) is used for the above mentioned algorithms. There are also many hybrid systems,
which incorporate various features of the above mentioned algorithms, resulting in a confusing
terminology in this field of research. However, all EAs share a common conceptual basis for
simulating the evolution of individual structures via inheritance and natural selection, which
depends on their perceived performance defined with respect to an environment (survival of
the fittest).

EAs use a vocabulary borrowed from biology. The key element of an EA is a population
Ξt that comprises numerous individuals ξt

k∈{1,...,q} – also called chromosomes or strings
– which are potential solutions to the given optimization problem. Here, the superscript t
denotes the time step (or generation) within the simulated evolution. In each generation,
the relatively good solutions reproduce, while the relatively poor solutions die. To give good
individuals a better chance to create offspring, a performance measure for their suitability
to solve the problem has to be defined. This is done using a fitness function4 J . Without
loss of generality, it can be assumed that Ξt is always sorted with respect to the fitness of
the individuals, so that ξt

1 is the best individual and ξt
q is the worst individual. A selec-

tion scheme (the simulated environment) selects individuals (parents) with a probability

4 This function, also called objective function or evaluation function, is analogous to the cost function in
optimal control theory. To emphasize this fact, it will be denoted by the same letter, J . However, one
must have in mind that the cost function is subject to minimization, whereas the fitness function is subject
to maximization.
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according to their fitness value J(ξt
k) to reproduce and to create offspring into a newly cre-

ated population Ξt+1. The selected parents undergo a series of ”genetic” transformations
(recombination, mutation), so that the offspring consists of a mixture of the parents ”ge-
netic material”. Under the selection pressure of the environment, the individuals strive
for survival. After some reproduction cycles, the population converges against a single solu-
tion, which is in the best case the globally optimal solution ξ? to the given problem. This
parallel processing of potential solutions is in contrast to traditional optimization methods,
which process only a single point of the search space. EAs have been applied with success
for finding near-global optima in very high-dimensional multimodal search spaces, the type
of which most real-world problems are.

4.3.2 How do Evolutionary Algorithms Work?

Within this section, a short introduction into the basic features of EAs is given, and the
notations are set up, which are used later on. This is done for a simple two-dimensional
parameter optimization problem, using the Simple Genetic Algorithm (SGA) according
to Goldberg [40]. Although the SGA is not employed within this work, it can illustrate all
important characteristics of EAs. Since the SGA allows a relative straightforward analytical
treatment, its theoretical properties are well understood.

As an example, let the following function be subject to maximization using the SGA:

f(s) = −
5∑

i=1

i · cos ((i− 1)s1 + i) ·
5∑

j=1

j · cos ((j + 1)s2 + j) (4.5)

with s = (s1, s2) ∈ S = S1 × S2 = [s1, s1] × [s2, s2]. S is called domain, search space or
solution space of the optimization problem. The optimization objective is to find the s?

that maximizes f(s), i.e.

f(s?) ≥ f(s) ∀ s ∈ S

Figure 4.4 sketches f(s) for S = [−6, 4]2. It can be easily seen that f(s) has many local
optima in S (over 100), but only one of them is the global optimum.5 Gradient-based
optimization methods have problems in locating the global optimum of such multimodal
functions, especially if the optimization function becomes very high-dimensional.

To solve this optimization problem with the SGA, the optimization parameters si∈{1,...,n=2}
have to be coded as a binary string, (s1, . . . , sn) ↔ 〈b1, b2, . . . , b`〉. In analogy to the
biological terms, the positions on the string are termed loci (singular: locus) and the value
of the string at a specific locus is called allele (plural: alleles). The length ` of the binary
string depends on the required precision of the solution. If di decimal places are required for
si, Si must be cut into 2`i − 1 ranges of equal size, where `i is the smallest integer such that

5 f?(s?
1

.
= −1.306708, s?

2
.
= −1.425128)

.
= 176.541793
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Figure 4.4 Multimodal function f(s) for s ∈ [−6, 4]2

(si − si) · 10di ≤ 2`i − 1; then ` =
∑n

i=1 `i.

Example: If a precision of at least four places after the decimal point is required, `1 = `2 = 17
(since 216 − 1 = 65535 < 10 · 104 < 217 − 1 = 131071) and thus ` = 34. The optimal chromo-
some is

ξ? = 〈0111100000100101101110101000111011〉

with f(−1.306742,−1.425151)
.
= 176.541791 that is due to the binary discretization slightly less

than the optimal function value f? = 176.541793.

A string’s corresponding function value might sometimes be taken as its fitness, i.e.

J(ξ) = f(s), (4.6)

where the chromosome ξ represents the real vector s. However, as it is shown later, a re-scaling
of the fitness function is often necessary.

The initialization of the first population Ξ0 is very simple. q binary strings are created with
random alleles at all loci. After that, reproduction starts. The SGA employs a reproduction
scheme that is called generational reproduction. Using generational reproduction, q
individuals are selected from the actual population Ξt and copied into the new population
Ξt+1, using a so-called selection scheme or selection method. The selection method
must guarantee that fitter individuals have a better chance to be selected. Thereafter, the
”genetic” operators (bit) mutation and (one-point) crossover are applied to generate new
individuals from the old ones. After that, the new population is taken as the actual population
and reproduction starts again. During reproduction, the SGA generates new chromosomes in
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three subsequent steps:

Selection (step 1): Two parent individuals are selected from Ξt according to each indi-
vidual’s fitness J(ξt

k) with probability pt
k. The SGA uses a selection scheme that is called

fitness proportional selection, since every individual has a selection probability that is
proportional to its fitness:6

pt
k =

J(ξt
k)

q · J t
avg

with J t
avg =

1
q

q∑
i=1

J(ξt
i) (4.7)

This selection scheme guarantees that good individuals are selected more often than poor
ones. However, this selection method fails in the case of negative fitness values, so that
proportional selection is typically used in combination with some fitness scaling technique
F+ : R 7→ R+ that assures J(ξ) ≥ 0 ∀ ξ ∈ {0, 1}`.

Example: J(ξ) = f(s) + 200

ξt
1= 〈1010101000001011110010101010010101〉

ξt
2= 〈1100101000111101101001010111110001〉

J(ξt
1) = f(0.642430,−0.168275) + 200

.
= 222.675911 and

J(ξt
2) = f(1.900069,−3.071435) + 200

.
= 190.588078.

Crossover (step 2): After selection, the crossover operator is applied with probability
pc. This operator combines the features of two parent chromosomes into two offspring chro-
mosomes by swapping corresponding segments of the chromosomes. The intuition behind
crossover is to exchange information between different potential solutions [61].

Example: Assuming that the crossover point was (randomly) selected after the 10th locus:

ξ′
t
1= 〈1010101000|111101101001010111110001〉

ξ′
t
2= 〈1100101000|001011110010101010010101〉

J(ξ′
t
1) = f(0.650060,−3.071435) + 200

.
= 191.362376 and

J(ξ′
t
2) = f(1.892440,−0.168275) + 200

.
= 223.882069.

Note that the second offspring has a better fitness than both of its parents.

Mutation (step 3): After crossover, the mutation operator is applied to both offspring.
The mutation operator alters one or more alleles of the chromosome by flipping every bit with
probability pm � 1. The intuition behind this operator is to introduce new alleles and to
re-introduce extinct alleles into the population, if all individuals throughout the population

6 Since this selection method can be imagined as the turn of a biased roulette wheel, where each individual
in the population has a slot sized proportional to its fitness, it is also called roulette wheel selection.
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have the same allele at some specific locus.

Example: Assuming that the 25th locus of the first chromosome was selected for mutation:

ξt+1
1 = 〈1010101000111101101001011111110001〉

ξt+1
2 = 〈1100101000001011110010101010010101〉

J(ξt+1
1 ) = f(0.650060,−3.032372) + 200

.
= 190.715404 and J(ξt+1

2 ) = J(ξ′
t
2). Thus, this partic-

ular mutation resulted in a fitness decrease. However, if the 24th locus was selected for mutation:

ξt+1
1 = 〈1010101000111101101001000111110001〉

so that J(ξt+1
1 ) = f(0.650060,−3.149560) + 200

.
= 193.975464, which is an improvement over

the original value J(ξ′
t
1)

.
= 191.362376.

4.3.3 Why do Evolutionary Algorithms Work?

Within this section, the theoretical foundations of the SGA are sketched, as far as they are
vital to appraise the performance characteristics of EAs in general and to understand the
problems that might arise during the application of EAs. A more comprehensive introduction
into EA theory can be found in [40], [43], and [61].

Although recombination redistributes existing information and mutation introduces new in-
formation into the search process, they are completely undirected and correspond to a random
walk in search space. This might lead to the impression that EAs work purely randomly and
can therefore not be superior to other random search procedures. This is de facto not the case,
since the undirected search of recombination and mutation becomes directed when a selection
mechanism is added that prefers better individuals and thus provides an active driving force
for improvement [9]. As they combine elements of directed and stochastic search, EAs are
very different from random search algorithms, although they belong to the class of probabilis-
tic search methods [61]. Another pivotal point is that the evolutionary operators do actually
not work on full strings but on substrings, which are subspaces of the search space. And,
as Holland [43] shows, the number of substrings that is successfully processed in parallel
within a single generation is not proportional to q but to q3, the cube of the population size.
Future populations are biased to explore regularities in the environment by exploiting above
average substrings. To understand how this is done, a measure for the similarity between dif-
ferent chromosomes has to be defined. This is done by introducing the notion of a schema,
a template that allows the exploration of similarities between chromosomes by introducing a
don’t care symbol ”?” into the genetic alphabet. A schema S represents all strings, which
match it on all string positions other than ”?”.

Example: To keep things simple, a string of length ` = 10 is assumed. Then, the schema

S = (?1 ? 1100101) matches the four strings {〈0101100101〉, 〈0111100101〉, 〈1101100101〉,
〈1111100101〉}

The number of fixed (i.e. non-”?”-positions) of a schema is called order of the schema and
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denoted as o(S).

Example: o(?1 ? 1100101) = 8, o(?1 ? ? ? ? ? ? ? ?) = 1

Consequently, a schema has r = ` − o(S) don’t care symbols. Thus it is an r-dimensional
subspace of the `-dimensional search space, as it is visualized in figure 4.5 for ` = 3. It is
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Figure 4.5 Visualization of schemata as subspaces in three-dimensional space

clear that every schema matches exactly 2r strings and that each string is matched by 2`

schemata. Between 2` and q · 2` schemata of the 3` possible schemata may be represented in
the population, depending on its ”genetic diversity” [61]. The order of a schema defines its
speciality. It is useful for calculating its survival probability for mutation, which is

psm(S) = (1− pm)o(S) ≈ 1− pm · o(S) for pm � 1 (4.8)

Another important notion is the defining length δ(S) of a schema, which is the distance
between the first and the last fixed string position.

Example: δ(?1 ? 1100101) = 8, δ(?1 ? ? ? ? ? ? ? ?) = 0

It defines the compactness of the information contained in the schema. The defining length
of a schema is useful for calculating its survival probability for crossover, which is7

psc(S) ≥ 1− pc ·
δ(S)
`− 1

(4.9)

7 The ≥-sign is due to the chance for the schema to survive crossover even if the crossover site is selected
between fixed positions.
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Its fitness at time t, J t(S), is another important attribute of a schema. It is defined as the
average fitness of all strings in the population matched by the schema S. Since under fitness
proportional selection each individual ξt

k is selected with probability pt
k = J(ξt

k)/qJ t
avg, the

expected number of strings matching the schema S in the next generation Ξt+1 is

N t+1(S) = N t(S) · J t(S)
J t

avg

(4.10)

Thus – in the absence of crossover and mutation – ”above average” schemata receive an
increasing number of strings in the following generations, whereas ”below average” schemata
receive a decreasing number of strings. If schema S remains above average by ε%, then

N t+1(S) = N0(S) · (1 + ε)t+1 (4.11)

and the schema receives an exponentially increasing number of strings in subsequent gen-
erations. However, taking additionally the disruptive effects of crossover and mutation into
account, the combined effect is

N t+1(S) ≥ N t(S) · J t(S)
J t

avg

[
1− pc ·

δ(S)
`− 1

− pm · o(S)
]

(4.12)

This equation is called schema growth equation. It gives the expected number of strings
matching a schema S in the next generation as a function of the actual number of strings
matching the schema, the relative fitness of the schema, and its defining length and order.
The implications of the schema growth equation are typically stated as the schema theorem
and the building block hypothesis, which is an immediate result of this theorem [61]:

Schema Theorem: Short, low-order, above average schemata receive exponentially in-
creasing trials in subsequent generations of a genetic algorithm.

Building Block Hypothesis: A GA seeks near-optimal performance through the juxta-
position of short, low-order, high-performance schemata, called building blocks.

This hypothesis suggests that the problem of coding is critical for the performance of the
SGA, since the coding should satisfy the idea of short building blocks. Holland showed
in [43] that at least q3 schemata are successfully passed from generation to generation, a
feature for which he coined the term implicit parallelism. This implicit parallelism is the
fundament for the power of evolutionary algorithms.

4.3.4 Advantages and Disadvantages of Evolutionary Algorithms

Within this section, the advantages and disadvantages of EAs with respect to gradient-based
optimization methods are appraised, since they are – providing the largest differences to
EAs – representative for traditional optimization methods. Other optimization methods like
simulated annealing or dynamic programming share the advantages of EAs in some respect.

The most important advantages of EAs over gradient-based optimization methods are their
good global search behavior, their blindness, their problem independence, and their
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robustness. In contrast to gradient methods, EAs explore the search space using a pop-
ulation of search points. This results in a good global search behavior within multimodal
environments, where the final result is relatively independent of the randomly chosen initial
population. To improve the actual search point, gradient methods require auxiliary informa-
tion like derivatives. EAs do not need such auxiliary information, they are blind. This makes
EAs especially suited for optimization problems, for which auxiliary information is difficult to
obtain or not available like for delayed reinforcement learning problems. EAs are also prob-
lem independent, since every problem, whose problem parameters can be coded on a string,
can be optimized using an EA. Gradient techniques are often very problem specific. The
backpropagation algorithm (see section 4.2.3) provides a good example for this proposition.
Backpropagation requires a very specific ANN topology and a differentiable transfer function
within the neurons. For all more general ANNs, backpropagation can not be used. Since EAs
can be applied for a very wide range (all kinds?) of optimization problems, they are robust
optimization methods.

However, if simple evolutionary algorithms like the SGA would be the best optimization
method for all kinds of optimization problems, EA and optimization research would have
ceased quickly. That this is not the case indicates that the application of EAs still yields
some problems, so that up to now, they can not be considered as all-in-one every-purpose
hands-off optimization tools. The major problems of (especially binary coded) EAs are that
– for some problems – they fail to locate the global optimum with the required precision, and
that the inclusion of nontrivial constraints and auxiliary information about the problem (and
the solution) is not trivial. Consequently, the major part of present EA research is focused
on the following questions:

(1) How can EAs be prohibited from premature convergence against a local optimum?

(2) How can EAs be a applied to problems that require a high precision of the solution?

(3) How can available auxiliary information be introduced into EAs?

(4) How can nontrivial constraints be introduced into EAs?

The following chapter 5 covers items (1) to (3) within the context of this work, and presents
the methods that have been chosen to avoid the associated problems. For a discussion of item
(4), the reader is referred to the standard EA literature, since this issue is not relevant within
this work.

4.4 Evolutionary Neurocontrol

Operating within so-called neurocontrollers, ANNs have been successfully applied to RL
problems [34]. Neurocontrol approaches to solve RL control problems can be divided into two
categories, indirect ones and direct ones [57, 95]. The direct neurocontrol approach, which
is used here, employs a single ANN, which is called action model. The action model controls
the dynamical system by providing a control vector u ∈ U from some input vector X ∈ X
that contains the information that is relevant to perform the control task (system state,
environmental state, etc.). The more commonly used indirect neurocontrol approach,
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which is dispensable within this work8, employs additionally a system model and a second
ANN, which is called evaluation model. Based on the system model, the evaluation model
provides a prediction of the evaluation of the action that is considered by the action model [12,
34, 57]. Henceforth, to keep the terminology simple, the term ”neurocontroller” is used for
the ANN that is precisely speaking ”the action model of a direct neurocontroller”.

The application of an EA to search for the NC’s optimal network function N? makes use
of the fact that an NC parameter vector πππ can be mapped onto a string, which provides an
equivalent description of the NC’s network function N (figure 4.6). By searching for the fittest
string ξ?, the EA searches for the NC’s optimal network function N?. Such NCs might be
called evolutionary neurocontrollers.

Figure 4.6 Mapping of an ANN onto a (real-valued) string

4.5 Spacecraft Steering Using Evolutionary Neurocontrol

For the implementation of spacecraft steering strategies, as defined in section 4.1.2, an NC may
be used. In this case, each NC parameter vector πππ defines a steering strategy Sπππ : X 7→ U .
The EA is used to determine the optimal NC parameter vector πππ? that yields, after some
transformations (see figure 4.1, the optimal spacecraft trajectory x?

SC[t].

Now, the two following sections have to address the two fundamental questions concerning
the utilization of an NC for spacecraft steering:

1. ”What input should the NC get?” (or ”What should the NC know to steer the space-
craft?”, section 4.5.1) and

2. ”What output should the NC give?” (or ”What should the NC do to steer the space-
craft?”, section 4.5.2)

8 the indirect approach has been developed to make the optimization of the action model amenable to
gradient-based methods like backpropagation
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4.5.1 Neurocontroller Input

To be robust, a steering strategy should not depend explicitly on time. Everything that the
strategy should ”have to know” to determine the actual optimal spacecraft control vector u(t)
is – at any time – the actual spacecraft state xSC(t) and target body state xT(t), hence

S : {(xSC,xT)} 7→ U (4.13)

If the spacecraft employs a propulsion system other than a solar sail, the actual propellant
mass mP(t) might be considered as additional input:

S : {(xSC,xT,mP)} 7→ U (4.14)

However, the number of potential NC input sets is still large: xSC and xT may be given in
coordinates of any reference frame and in combinations of them. Also the difference xT−xSC

may be used, again in coordinates of any reference frame and in combinations of them. If
only cartesian coordinates, polar coordinates, orbital elements, and their combinations and
differences are considered, there are 14 possible input sets9. Some possible input sets are
depicted in figures 4.7 to 4.10. The optimal input set is expected to be problem-dependent.

Example: If an orbit transfer from Earth to the orbit of Mercury has to be performed, it is

not reasonable to give the spacecraft and the target body state in orbital elements, ESC and

ET, since the orbital elements of the target body do not change (except the anomaly, which is

irrelevant for an orbit transfer). Thus, better results are expected, if ET −ESC is used as input,

since the NC network and thus the dimension of the solution space is smaller in this case.

4.5.2 Neurocontroller Output

4.5.2.1 Indirect Steering Strategies

One way to obtain spacecraft steering strategies is to use blended LSLs (see section 3.2.3), so
that for solar sailcraft

S : X 7→ {c} (4.15)

and for other spacecraft

S : X 7→ {c, χ} (4.16)

Since such steering strategies have implicit knowledge about how to change the orbital ele-
ments in an optimal way, they can be considered as indirect steering strategies.

Figure 4.7 shows an example for an indirect solar sailcraft steering strategy. The NC re-
ceives the sailcraft state xSC and the target body state xT in polar coordinates and gives the
components of the five-dimensional steering law weight vector cQ (for matching the orbital
elements with a maximum rate). The direction unit vector d can be calculated from cQ

9 if mixed combinations like xSC in cartesian coordinates and xT in polar coordinates are omitted from the
set of potential inputs
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using equation (3.7). Figure 4.8 shows another example for an indirect solar sailcraft steering
strategy. The NC receives xSC and xT in cartesian coordinates and gives the components
of the ten-dimensional steering law weight vector cL (for increasing / decreasing the orbital
elements with a maximum rate). Again, the direction unit vector d can be calculated from
cL using equation (3.7).

Figure 4.7 NC for indirect steering of solar sailcraft (matching the orbital elements)

Figure 4.8 NC for indirect steering of solar sailcraft (for increasing/decreasing the orbital elements)
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4.5.2.2 Direct Steering Strategies

Using an NC, the implementation of steering strategies is also possible without the use of
LSLs, e.g. if the NC provides a three-dimensional output vector d′′ ∈ (0, 1)3, from which the
direction unit vector d can be directly calculated via10

d′ = 2 ·

d′′1
d′′2
d′′3


O

−

1
1
1


O

(4.17a)

d = d′/|d′| (4.17b)

so that for solar sailcraft

S : X 7→ {d} (4.18)

and for EP spacecraft

S : X 7→ {d, χ} (4.19)

Since such steering strategies do not have implicit knowledge about locally optimal spacecraft
steering, they can be considered as direct steering strategies.

Figure 4.9 NC for direct steering of solar sailcraft

Figure 4.9 shows an example for a direct solar sailcraft steering strategy. The NC receives
xT − xSC in cartesian and polar coordinates and gives a three-dimensional output vector d′′,

10 Of course d could also be calculated from a two-dimensional output vector, if the two output values are
interpreted as two direction angles. However, this is not recommended, since in this case two similar
angular values like α1 = π − ε and α2 = −(π − ε) (∆α12 = 2ε ≈ 0) can be far apart, when mapped onto
a linear scale (∆α12 = 2(π − ε) ≈ 2π). If the optimal value of α oscillates around ±π, the corresponding
output neuron would have to give alternatingly completely different outputs for subsequent time steps
(≈ 0 and ≈ 1), which is impossible for smooth NC inputs.
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Figure 4.10 NC for direct steering of EP spacecraft

from which the direction unit vector d can be calculated using equations (4.17). Figure 4.9
shows an example for a direct EP spacecraft steering strategy. The NC receives xT − xSC in
cartesian coordinates and the actual propellant mass mP and gives the three components of
d′′ and the throttle χ .

Figure 4.11 shows a comparison of direct and indirect steering strategies.

Figure 4.11 Comparison of direct and indirect steering strategies
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4.5.3 Neurocontroller Fitness Assignment

As it is discussed in section 3.1.1, the optimality of a trajectory might be defined with respect
to various (primary) objectives (e.g. transfer time or propellant consumption). When using
an ENC for trajectory optimization, the accuracy of the trajectory with respect to the termi-
nal constraints must also be stated as secondary optimization objectives, since the terminal
constraints are not explicitly stated otherwise and need not to be satisfied throughout the
search process.

If for example the transfer time for a rendezvous is to be minimized, the fitness function must
include the transfer time T = t̄f − t̄0 as well as the final distance to the target body ∆rf =
|rT(t̄f )−rSC(t̄f )| and the final velocity relative to the target body ∆vf = |ṙT(t̄f )−ṙSC(t̄f )|, thus
J(T,∆rf ,∆vf ). Accordingly, if the propellant mass for a fly-by problem is to be minimized,
∆vf is not relevant but the consumed propellant ∆mP = mP(t̄f ) −mP(t̄0) must be part of
the fitness function, thus J(∆mP,∆rf ).

Since the ENC can not be expected to satisfy the terminal constraints exactly (∆rf = 0 m,
∆vf = 0m/s), a maximum allowed distance ∆rf,max and a maximum allowed relative velocity
∆vf,max of the spacecraft at the target body have to be defined. Although those values demand
careful consideration, one needs not to be an expert in astrodynamics to find an appropriate
setting. For a planetary rendezvous, for example, ∆rf,max should lie somewhere between
the planetary radius and the planetary gravitational sphere of influence. Ideally, ∆vf,max

should be set as to minimize the combined transfer and capture time to the planetary target
orbit (or as to minimize the total propellant mass for the transfer and the capture phase).
This is not possible within the one-body simulation model used within this work, but would
necessitates a combined optimization of both phases. For practical purposes, ∆vf,max might
be set within the range 0.1 − 0.5 km/s. However, if an atmospheric entry, aerocapture or
aerobraking is envisaged at the target, ∆vf,max could be larger. Using ∆rf,max and ∆vf,max,
the final distance and relative velocity at the target body can be normalized:

∆R =
∆r

∆rf,max
∆Rf =

∆rf

∆rf,max
(4.20)

∆V =
∆v

∆vf,max
∆Vf =

∆vf

∆vf,max
(4.21)

Furthermore, it will become necessary to define a measure for the accuracy of the trajectory,
i.e. for the fulfillment of the terminal constraint, e.g.

∆X =

√
1
2

(∆R2 + ∆V 2) ∆Xf =

√
1
2

(
∆R2

f + ∆V 2
f

)
(4.22)

Since most individuals never achieve the required accuracy during the search process, a max-
imum transfer time Tmax must be given for the numerical integration of the trajectory. It is
important to note that tf is defined with respect to the best accuracy. Thus, ∆rf and ∆vf

are not the distance and relative velocity at the end of integration, but at the time when ∆X
is minimal.

Now, sub-fitness functions may be defined with respect to the primary and the different
secondary optimization objectives. During many preliminary tests, it has been found that the
performance of the ENC strongly depends on an adequate choice of the sub-fitness functions
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and on their composition to an (overall) fitness function. This is reasonable, since the fitness
function has not only to decide autonomously which trajectories are good and which are not,
but also which trajectories are promising for future ”cultivation” and which are not. The
primary sub-fitness functions

JT = 1000 ·
(

1− T

Tmax

)
(4.23)

JmP =
mP(t0)

2mP(t0)−mP(tf )
− 1

3
(4.24)

and the secondary sub-fitness functions

Jr = log
(

1
∆Rf

)
(4.25)

Jv = log
(

1
∆Vf

)
(4.26)

have empirically found to produce acceptable results. They have been used for all trajectory
optimization runs within this work. JT is constrained to be in the interval 0 ≤ JT ≤ 1000
and JmP is constrained to 1/6 ≤ JmP ≤ 2/3. Jr and Jv take positive values if the respective
accuracy requirement is fulfilled and negative values, if it is not.

Another empirical finding is that the search process should first concentrate on the accuracy of
the trajectories and then on the primary optimization objective.11 Therefore, the sub-fitnesses
for the primary optimization objective are modified to

J ′T =

{
0 if Jr < 0 ∨ Jv < 0
JT if Jr ≥ 0 ∧ Jv ≥ 0

(4.27)

and

J ′mP
=

{
0 if Jr < 0 ∨ Jv < 0
JmP if Jr ≥ 0 ∧ Jv ≥ 0

(4.28)

To guide the search process, sub-fitness functions J� for other trajectory parameters � (like
the eccentricity e or the orientation of the orbital plane eh) might be introduced in the same
way. They might be used as long as Jr < 0∨Jv < 0 and then be discarded if Jr ≥ 0∧Jv ≥ 0.
However, this guidance is at the expense of the simplicity of the fitness function.

Transfer Time Minimization for Rendezvous: Two fitness functions might be con-
ceived:

J1(T,∆rf ,∆vf ) = J ′T +
1√

∆R2
f + ∆V 2

f

(4.29)

J2(T,∆rf ,∆vf ) = J ′T +
1√

2 ·max(∆Rf ,∆Vf )2
(4.30)

11 However, the primary objective can be used as a selection criterion for the selection method that has been
applied within this work (tournament selection, see section 5.2)



4.5 Spacecraft Steering Using Evolutionary Neurocontrol 57

Using J1, a poor final distance can be compensated with a good relative velocity and vice
versa. This is not possible for J2. Empirical results indicate that J1 is superior to J2 for most
problems. However, for some problems J1 might run into a local optimum, where it yields
very good final distances but fails to match the final velocity.

Propellant Mass Minimization for Rendezvous: The fitness functions for this trajec-
tory optimization problem are similar to those in the last paragraph, but J ′T is replaced with
J ′mP

.

J1(∆mP,∆rf ,∆vf ) = J ′mP
+

1√
∆R2

f + ∆V 2
f

(4.31)

J2(∆mP,∆rf ,∆vf ) = J ′mP
+

1√
2 ·max(∆Rf ,∆Vf )2

(4.32)

Transfer Time Minimization for Fly-By: For a fly-by at the target body, only the
positions must match and therefore

J(T,∆rf ) = J ′T +
1

∆Rf
(4.33)

Propellant Mass Minimization for Fly-By: Here, J ′T is again replaced with J ′mP
, and

thus

J(∆mP,∆rf ) = J ′mP
+

1
∆Rf

(4.34)

4.5.4 Evolutionary Neurocontroller Design

This section summarizes how an ENC may be applied for low-thrust trajectory optimiza-
tion. To find the optimal spacecraft trajectory, the ENC method is running in two loops
(figure 4.12). Within the (inner) trajectory integration loop, an NC steers the spacecraft ac-
cording to its network function Nπππ, that is completely defined by the NC’s parameter vector
πππ, which is set and evaluated by the EA in the (outer) NC optimization loop. The EA holds
a population of NC parameter vectors, Ξ = {πππ1, . . . ,πππq}. Within the trajectory integration
loop the EA evaluates all NC parameter vectors πππj∈{1,...,q} for their suitability to generate
an optimal trajectory. Within the trajectory optimization loop, the NC takes the actual
spacecraft state xSC(t̄i∈{0,...,τ}) and that of the target body xT(t̄i) as input values, and maps
from them onto some output values. For EP spacecraft, the input values include the actual
propellant mass mP(t̄i) and the output includes the throttle χ(t̄i). If the NC implements an
indirect steering strategy, its remaining output values are interpreted as the required steering
law weight vector c(t̄i). Using this steering law weight vector, the direction unit vector d(t̄i)
can be calculated from Lagrange’s planetary equations. If the NC implements a direct steer-
ing strategy, its first three output values are interpreted as the components of the required
direction vector d′(t̄i). So the required direction unit vector d(t̄i) (or γ̃(t̄i) and δ̃(t̄i)) can
be calculated in both cases. From this, the spacecraft control vector u(t̄i) can be calculated.
Then, xSC(t̄i) and u(t̄i) are inserted into the equations of motion, which are (numerically)
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Figure 4.12 Trajectory optimization using evolutionary neurocontrol

integrated over one time step ∆t̄ = t̄i+1− t̄i to yield xSC(t̄i+1). This state is fed back into the
NC. The trajectory integration loop stops when the accuracy of the trajectory is sufficient
(∆X ≤ 1 ⇒ t̄i+1 = t̄f ) or when the time limit is reached (t̄i+1 = t̄τ ). Then, back in the
NC optimization loop, the NC’s parameter vector (i.e. its trajectory) is rated by the EA’s
fitness function J(πππj). This fitness value (the rating of the simulated environment) is crucial
for the probability of πππj to reproduce and to create offspring. It has been found that the per-
formance of the ENC depends strongly on an adequate choice of the fitness function. This is
reasonable, since the fitness function has not only to decide autonomously which trajectories
are good and which are not, but also which trajectories are promising for future ”cultivation”
and which are not. Under the selection pressure of the environment, the EA breeds NCs that
generate more and more suitable steering strategies that in turn generate better and better
trajectories. The EA finally converges against a single steering strategy, which gives in the
best case a near-globally12 optimal trajectory x?

SC[t].

12 near -globally, since global optimality can rarely be proved except by complete enumeration, which is not
feasible



5 InTrance Implementation

InTrance has been developed within this work to solve low-thrust trajectory optimization
problems, fusing artificial neural networks and evolutionary algorithms to evolutionary neu-
rocontrollers. Within this chapter, the implementation of the evolutionary algorithm is de-
scribed, which is employed within InTrance to find the neurocontroller that resembles the
optimal spacecraft steering strategy. This implementation is largely based on approaches
that have been proposed to avoid – or at least to mitigate – the problems (see section 4.3.4)
that are associated with standard genetic algorithms like Goldberg’s SGA. It includes:

• real-valued parameter encoding (section 5.1)

• binary multi-objective tournament selection (section 5.2)

• one-at-a-time reproduction (section 5.2)

• real delta coding (section 5.3)

• non-standard evolutionary operators (section 5.4)

5.1 Precision and Real-valued Coding

It is a long-standing debate in the field of EAs, whether a binary parameter representation
or a real-valued parameter representation is superior over the other. For a long time, the GA
community has been largely focused on the binary parameter representation, since this repre-
sentation decomposes the optimization problem into the largest number of smallest building
blocks. This viewpoint is now considered to be controversial [94]. A major problem that EAs
often encounter when using the binary representation is that they are not able to provide
high-precision solutions, and that they are not able to operate in the presence of nontrivial
constraints [61]. These problems result from the drawbacks of the binary representation when
being applied to high-dimensional high-precision numerical problems, as for example to the
optimization of the internal parameters of an ANN.

Example: A 24-30-3 feedforward ANN, as frequently used within this work, has 908 internal

parameters πi. If all of them are bounded to be in the range [−2, 2] and a precision of 8 digits

after the decimal point is required, the length of the binary vector is ` = 908 · 29 = 26332. For

such problem dimensions, GAs perform poorly [61]. Using a real-coded string, ` = 908 and the

precision is the machine precision of the computer.

Experiments like those performed by Michalewicz [61] indicate that the real-valued param-
eter representation is faster, more consistent from run to run, and provides a higher precision
(especially in large search spaces). The real-valued representation is also closer to the problem
space, which facilitates the development of problem-specific evolutionary operators and the
handling of nontrivial constraints. Therefore, the real-valued parameter representation has
been used within this work. Using real-valued coding, a chromosome corresponds to a vector
of real numbers and an allele corresponds to a real number value, i.e. ξ = 〈r1, r2, . . . , r`〉,
where ` is the dimension of the problem.
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5.2 Premature Convergence and Selection Methods

The two most important issues in evolutionary search are selective pressure and popu-
lation diversity, both being strongly related: an increase in selective pressure decreases
population diversity and vice versa. The selective pressure (SP) of a selection method is
defined as the expected number of copies of the best individual ξt

1 in the next generation
Ξt+1. For fitness proportional selection, it is the product of its selection probability and the
population size:

SPt = pt
1 · q =

J(ξt
1)∑q

i=1 J(ξt
i)
· q =

J(ξt
1)

J t
avg

(5.1)

The problem with fitness proportional selection is that a selective pressure that is too strong
supports premature convergence to a local optimum, whereas a selective pressure that is
too weak makes the search ineffective. Therefore, one of the most important issues for EAs
is to sustain an adequate selective pressure throughout the search. Premature convergence is
often a result of so-called superindividuals, which have a fitness that is much better than
the average fitness of the population. According to equation (5.1), such superindividuals have
a large number of offspring, thus preventing other individuals from contributing offspring into
the next generation. The result is a fast loss of genetic diversity. One way to circumvent this
problem is to choose the fitness function with very careful consideration, or to use a fitness
scaling method. However, both approaches are not recommendable, since they are problem
dependent and put the responsibility on the user to decide when and how to use them.

Some selection methods have been proposed that make fitness scaling unnecessary through
assigning the selection probability based on the individual’s relative fitness – its rank – in the
population (see [10] or [16] for a comprehensive survey of selection methods). However, all
ranking methods have the drawback of being computationally expensive.1 Another selection
method that is based on ranking but is computationally more efficient is tournament selec-
tion, where a single individual is selected by choosing some number µ ≥ 1 of individuals at
random from the population Ξt and copying the best individual from this group into the next
population Ξt+1. This process is repeated q times to fill the population. Tournament selection
does not require a fitness scaling method, since the selection probability is independent of
absolute fitness. For this reason, and due to its simplicity, this selection method has also been
employed within this work, with µ = 2 (binary tournament), which is the most common
tournament size [10]. It can be proved2 that the selection probabilities are then given by

pi =
(q − i + 1)µ − (q − i)µ

qµ
(5.2)

and for µ = 2

p1 =
2q − 1

q2
(5.3)

so that

SP = p1 · q =
2q − 1

q
= const with lim

q→∞
SP = 2 (5.4)

1 since the population must always be sorted with respect to the fitness of the individuals
2 see [10]
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so that the selective pressure remains constant throughout the search process. The best
individual receives on average about two copies in the next generation, only depending on
its rank within the population and independent of its absolute fitness. Another advantage of
tournament selection is that each tournament can be performed (e.g. randomly) with respect
to a different optimization objective. Such a selection mechanism prefers individuals that
perform reasonably well with respect to all objectives3, allowing multi-objective optimization
without explicitly weighting the objectives, since the individual objectives need not to be part
of the fitness function.

Another approach that has been chosen due to its computational efficiency is to let only one
reproduction take place at each time step. This so-called one-at-a-time reproduction or
steady-state reproduction is in contrast to the generational reproduction of the SGA,
but can be combined easily with tournament selection. Generational reproduction generates
an entirely new population Ξt+1 from Ξt, thus being computationally expensive, since it must
be guaranteed that the good individuals in Ξt are also present in Ξt+1. Consequently, the
crossover probability must be significantly less than one, and most of the algorithm’s runtime
is spent for copying strings without progressing the search. One-at-a-time reproduction in
combination with tournament selection is conceptually very simple (see figure 5.1): two tour-
naments are performed to determine the two parent chromosomes, which are the winners of
the tournaments. They stay in the population, while the two tournament losers are replaced
by the two offspring chromosomes.

Figure 5.1 One-at-a-time reproduction with tournament selection

3 It’s like a duel between two cowboy gunslingers. To survive a duel, one must draw fast and aim accurately.
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5.3 Delta Coding and Real Delta Coding

Delta coding (DC) was proposed by Whitley et al. [96] to enhance the precision and
convergence behavior of genetic search (for binary strings). DC is an iterative search strategy
that is based on the idea that a string can also express a distance δ to some previous solution
h, called interim solution or partial solution, which is the best known solution so far.
Using DC, each individual ξk consists of two parts, the partial solution and the δ-chromosome:

ξk = h + δk

or

〈b1, . . . , b`〉k = 〈h1, . . . , h`〉+ 〈δ1, . . . , δ`〉k

Consequently, only a dynamically selected subspace of the total search space is explored at any
time. This subspace is constructed around the most recent partial solution. DC starts with the
initial run of a GA. After the population has converged, the best δ-chromosome is added to the
old partial solution to form the new partial solution. After that, a new population is created
within an new (reduced or enlarged) search subspace that is centered around the new partial
solution. By periodically re-initializing the population, DC avoids premature convergence.
DC also provides a mechanism that reduces or enlarges the size of the binary hypercube being
currently searched. The reduction mechanism allows the algorithm to focus the search on
search subspaces that appear promising, whereas the expansion mechanism allows the
algorithm to explore previously overlooked portions of the search space in later search [59].
To decide whether the population has converged, Whitley et al. used the Hamming-distance
between the best and the worst individual,

∑`
i=1 |bi,1 − bi,q|. The population is re-initialized

if the Hamming-distance is > 1. If the new partial solution is identical to the old one, i.e. if
the best δ-chromosome is a zero-string, the hypercube is expanded by one bit. Otherwise the
hypercube is contracted by one bit. This continues until a solution is found that meets some
user-defined criterion, or until the user-defined maximum number of trials is exhausted [96].
In [59], DC was compared against a standard GA and a mutation-driven stochastic hill-
climbing algorithm on a suite of standard EA test functions, and was found to be superior to
both algorithms. DC was the only algorithm that consistently found the global optimum for
all test functions, using fewer trials than the other algorithms for all but one test function.

Dachwald et al. extended the idea of delta coding to real-valued strings (floating point delta
coding, FPDC) [23, 91], so that

〈r1, . . . , r`〉k = 〈h1, . . . , h`〉+ 〈δ1, . . . , δ`〉k

The algorithm that is used within this work is a revised version of FPDC and should be
termed real delta coding (RDC). Like FPDC, RDC is an extension of Whitley’s delta
coding algorithm to real-valued strings. Figure 5.2 sketches the RDC algorithm. RDC runs
in cycles, called epochs. Within each epoch, a dynamically selected subspace of the total
search space around the most recent partial solution is explored. For the first epoch e0, the
search subspace

H0 = [−δmax(e0), δmax(e0)]` ⊂ R`
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Figure 5.2 Real delta coding

is constructed around the ”partial solution” h(e0) = 0 and the population for the first time
step t0 of epoch e0 is initialized at random, Ξt0(e0) = {δt0

1 (e0), . . . , δt0
q (e0)}. Then, the EA – as

described above – runs until some epochal convergence criterion is met. The convergence
criterion that has been used within this work does – unlike for DC – not depend on the
population diversity but more pragmatically on the relative improvement within the last ν
time steps: if at some time step t, the relative improvement within the last ν time steps,
J(ξt

1) − J(ξt−ν
1 ), is less than ε%, the population is said to be converged and t = tc (c for

convergence). After convergence, ξtc
1 (e0), the best found solution in epoch e0, is taken as the

partial solution h(e1) for the next epoch. To guarantee the convergence of the algorithm,
RDC uses no search space expansion mechanism. The search space reduction mechanism is
very simple:

δmax(e1) = κ · δmax(e0),

where 0 < κ < 1 is a user-defined parameter. Within the new search subspace

H1 = [h1(e1)−δmax(e1), h1(e1)+δmax(e1)]× . . .× [h`(e1)−δmax(e1), h`(e1)+δmax(e1)] ⊂ R`

Ξt0(e1) is again initialized at random, and so on. This is done until some RDC convergence
criterion is met. This one is similar to the epochal convergence criterion: if at some epoch
ei, the relative improvement to the last epoch, J(h(ei+1))−J(h(ei)), is less than ε%, RDC is
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said to be converged. For an ideal RDC performance, the search within each search subspace
must be very extensive (ν and κ large, ε small). The optimal values of ν and ε must be
set according to the chosen fitness function and a trade-off between search effort and search
duration. To put the decision which values to take not on the user, a robust setting for ν
and ε is ”hard-wired” in the InTrance program. Due to practical search time limitations, two
modifications have been made that yield empirical improvements in search behavior within
restricted calculation time:

1. The first epoch is performed several (user-defined) times.4 After those so-called search
space scan epochs, the best found solution is taken as h(e1).

2. At each epoch ei, the partial solution is defined with respect to the best solution of the
last epoch ξtc

1 (ei−1) and not with respect to the best solution found so far ξ? [96]. RDC
takes ξtc

1 (ei−1) as the center of the new search subspace, but saves ξ?. If ξtc
1 (ei−1) is

worse than ξ?, the search subspace is shifted but not contracted. However, after having
done this for two subsequent epochs without finding a better ξ?, the old ξ? is taken
again as partial solution and the search subspace is again contracted.

5.4 Evolutionary Operators

Standard genetic operators that work on binary chromosomes can not be applied directly to
real-valued chromosomes. Therefore, new genetic operators, which are tailored to work on
real-valued strings, have to be designed. Besides the analogues to the one-point crossover
operator and the bit mutation operator that is used in the SGA, many other evolutionary
operators can be conceived and – consequently – many evolutionary operators have been
proposed so far. This section describes the ones that are employed within InTrance.

5.4.1 Crossover

InTrance implements three crossover operators (see figure 5.3):

1. The implemented one-point crossover operator works analogous to its binary pen-
dant.

2. If uniform crossover is applied, it is decided for each locus in the first offspring (by the
simulated toss of a coin) which parent contributes its allele in that position. The second
offspring receives the allele from the other parent. Since uniform crossover exchanges
single alleles and not segments, it can combine features regardless of their relative
location on the string. It has been shown that this ability outweighs the disadvantage
of destroying building blocks for some binary-coded problems [61, 90].

3. If crossover nodes is applied, it is decided for each coded neuron in the first offspring
(by the simulated toss of a coin) which parent contributes its coded parameters for
that neuron. The second offspring receives the coded neuron from the other parent.
This prevents the logical subgroups of the string – the parameters of a single neuron –

4 using different randomly generated initial populations Ξ0
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from being torn apart. Crossover nodes was proposed and studied in [63] as a tailored
operator for ANN parameter optimization, where it was implemented within a GA that
outperformed the backpropagation algorithm on a complex sonar image classification
problem.

Figure 5.3 Implemented evolutionary operators

The one-point crossover operator and the uniform crossover operator are applied with proba-
bility 1/4 respectively, whereas the crossover nodes operator is applied with probability 1/2,
so that in total pc = 1. It is to note that all three crossover operators do only exchange real
numbers between the chromosomes but do not change the numbers themselves. This can only
be done by the mutation operator.

5.4.2 Mutation

Whitley pointed out that for DC no mutation operator is necessary, since the population is
re-initialized at regular intervals [96]. Preliminary InTrance tests, however, have revealed that
this might be different for real-valued strings. In this case, the absence of a mutation operator
leads for small population sizes to premature convergence within the epochs. For this reason,
InTrance implements a mutation operator, which should be termed fast uniform mutation.
Fast uniform mutation is based on uniform mutation [90]. However, if uniform mutation
was applied to a string, it would be decided for each locus (with probability pm ≈ 10−3),
whether or not the respective allele is to be mutated. This process is very time consuming.5

Therefore, a fast uniform mutation operator is implemented in InTrance. If fast uniform
mutation is applied, it is decided for the entire chromosome (with probability 0 ≤ pm ≤ 1),
whether or not a single allele of the chromosome is to be mutated. If this is the case, the
locus that is to be mutated is randomly selected. If for example the ith locus of chromosome
δj is to be mutated, its allele δji is replaced with a new one, δ′ji ∈ [−δmax,+δmax].
5 since about 1000 random numbers have to be generated for a single mutation
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5.5 Additionally Encoded Problem Parameters

If an EA is already employed for the evolution of the ENC, it is manifest to employ this
EA also for the parallel optimization of additional problem parameters, which can be done
without major additional effort. This way, the following parameters are additionally encoded
on the chromosome, making them an explicit part of the optimization problem:

• the launch date t0

• the launch velocity |v∞| (hyperbolic excess velocity)

• the launch azimuth, defined as the angle between eϕ and the projection of v∞ into the
er-eϕ-plane

• the launch elevation, defined as the angle between the projection of v∞ into the er-eϕ-
plane and v∞

• the initial propellant mass6 mP(t0)

Figure 5.4 Additionally EA encoded problem parameters

For this purpose, an interval is defined for each additional optimization parameter, together
with a mapping function that maps the respective allele onto this interval.

6 except for solar sailcraft
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Before InTrance can be considered as a viable low-thrust trajectory optimization tool, its
convergence behavior has to be evaluated and the quality of the obtained solutions has to be
assessed. Within this chapter, InTrance is used to re-calculate low-thrust problems, for which
trajectories can be found in the literature (henceforth called reference problems/trajectories).
Since those trajectories are the best ones available so far, they must provide the benchmark
to assess the performance of InTrance for low-thrust trajectory optimization. All reference
problems employ a one-body simulation model, where the gravitational influence of the planets
and other disturbing forces are neglected.

Several studies for interplanetary solar sailcraft missions have been carried out at DLR
[47, 51, 52, 54, 55, 86] and elsewhere [80, 98], so that a reasonable sample of solar sailcraft ref-
erence trajectories is available. All reference problems employ an ideal solar sailcraft model.
Three of them are used within this chapter to assess the suitability of InTrance for solar
sailcraft trajectory optimization and to investigate the influence of various factors (accuracy
requirements, EA parameters, NC topologies, NC input noise, disturbing forces):1 a Mer-
cury rendezvous for an advanced solar sailcraft (ac = 0.55 mm/s2, section 6.1), a near-Earth
asteroid (NEA) rendezvous for a moderate-performance solar sailcraft (ac = 0.14 mm/s2,
section 6.2), and a fast Pluto fly-by for a very advanced solar sailcraft (ac = 1.0 mm/s2,
section 6.3). Within section 6.4, InTrance is used to calculate minimal orbit transfer times
to various solar system bodies for ideal solar sailcraft with characteristic accelerations in the
range 0.1 mm/s2 ≤ ac ≤ 10.0 mm/s2, extending the currently available data to moderate-
performance solar sailcraft (ac . 0.5 mm/s2) and to solar sailcraft of extremely high perfor-
mance (ac & 2.5 mm/s2).

For EP spacecraft, it is more difficult to find suitable reference trajectories, since the complete
EP system models are typically not given in the literature. However, trajectories for a multiple
NEA rendezvous and sample return mission, called ”Hera”, using an SEP spacecraft with a
cluster of three NSTAR thrusters, were found for reference (section 6.5) [4].

6.1 Mercury Rendezvous Mission

To assess the performance of InTrance for solar sailcraft trajectory optimization, a rendezvous
trajectory to Mercury for an ideal solar sailcraft with a characteristic acceleration of ac =
0.55 mm/s2, calculated by Leipold et al. [51, 54, 55] using a LTOM, has been taken for
reference. This reference trajectory launches at Earth at 15 Jan 03 (MJD 52654.5) with an
hyperbolic excess energy of C3 = v2

∞ = (ṙSC(t0)− ṙEarth(t0))2 = 0 km2/s2 and takes 665 days
to rendezvous Mercury.

1 For this purpose it is not a restriction that the launch date of some reference trajectories lies by now in
the past.
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6.1.1 Convergence Behavior and Stability

To evaluate its convergence behavior and stability, InTrance was run five times – using differ-
ent seed values for the C++ (pseudo-)random number generator2 – for the same launch date
as in [51, 54, 55] (reference launch date). A 12–30–3 neurocontroller3 has been used, where
the input neurons receive the actual solar sailcraft state xSC and the actual target body state
xT in cartesian coordinates, and the output neurons define – according to equation (4.17) –
directly the thrust direction unit vector d. On the basis of preliminary InTrance-runs, which
indicated that the optimal transfer takes less than 600 days, the maximum transfer time was
set to Tmax = 600 days. For discretization, this time interval was cut into τ = 600 finite ele-
ments of equal length, so that the solar sailcraft is ”allowed” to change its attitude once every
day. The final accuracy limit (convergence criterion) was set to ∆rf,max = 100 000 km and
∆vf,max = 100m/s.4 The population size was set to q = 50. As for all InTrance-calculations
within this work, a Runge-Kutta-Fehlberg method of order 4(5) has been used for the
numerical integration of the trajectories.5

Figures 6.1 and 6.2 show the results of the five InTrance-runs. Although the variation of the
sail steering angles differs considerably for the five steering strategies (see figure 6.2.2), the
respective trajectories differ only little in transfer time (figure 6.1), which may indicate some
robustness concerning the required sail steering accuracy for a real mission. The worst found
trajectory (T = 589 days) takes only 2.6% longer to rendezvous Mercury than the best one,
so that there can be some confidence that the best found trajectory (figure 6.2.1) is not far
from to the global optimum. It is 91 days (∆T% = 16%)6 faster than the reference trajectory,
revealing that the latter is far from the global optimum. The final distance to Mercury is

Figure 6.1 Mercury rendezvous trajectories for five different initial NC population (reference
launch date)

2 leading to different initial NC populations
3 12 input neurons, 1 hidden layer with 30 hidden neurons, 3 output neurons
4 ∆vf,max = 100m/s was also used by Leipold et al. [51], whereas ∆rf,max is not given in [51]
5 The Runge-Kutta-Fehlberg (RKF) method uses a Runge-Kutta method of order 5 to estimate the

local error in a Runge-Kutta method of order 4.
6 ∆T% = TInTrance−TR

min(TR,TInTrance)
· 100%, where TR is the transfer time of the reference trajectory
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6.2.1: Best InTrance-trajectory
6.2.2: Steering angles (the bold line denotes the

steering angles for the trajectory shown on
the left side)

Figure 6.2 Mercury rendezvous (reference launch date)

∆rf ≈ 57 000 km and the final relative velocity to Mercury is ∆vf ≈ 57 m/s, both being well
better than the required accuracy limits.

Figure 6.3 Launch date fingerprints for the five different steering strategies shown in figure 6.1
and 6.2

To assess the similarity of the five InTrance-steering strategies, so-called ”launch date fin-
gerprints” (LDFs) have been calculated (figure 6.3). These LDFs show the accuracy of
the steering strategy according to equation (4.22) for different launch dates within a 1 year-
interval around the nominal launch date (MJD 52654.5). From the LDFs, one can see that
all five steering strategies achieve a good accuracy only for the launch date for which they
have been ”bred” by the evolutionary algorithm, so that they are not universally valid. A
universal steering strategy would achieve a good accuracy for all launch dates. For each
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specific launch date, the final trajectory deviation is approximately the same for all five ENCs.
This similarity of the LDFs indicates that – generating similar outputs from similar7 inputs
– the underlying steering strategies can also be expected to be similar.8

6.1.2 Different Population Sizes and Accuracy Requirements

To assess the influence of search duration (which is due to the RDC epochal convergence
criterion (see section 5.3) mainly determined by the population size of the EA) and required
accuracy (∆rf,max and ∆vf,max) on the results, InTrance was run for three different population
sizes and two final accuracy limits (FAL1: ∆rf,max = 1000 000 km, ∆vf,max = 500m/s; FAL2:
∆rf,max = 100 000 km, ∆vf,max = 100m/s), using the same NC as in the last section. The
results are given in tables 6.1 and 6.2. Table 6.3 shows the average runtime for the calculations.

Population size Transfer time T Average Std. dev.
q run 1 run 2 run 3 run 4 run 5 Tavg σT

25 566 573 577 570 572 571.6 4.04
50 569 568 573 571 568 569.8 2.17
100 570 564 564 567 569 566.8 2.77

Table 6.1 Transfer times to Mercury for different population sizes (FAL1, five different initial NC
populations)

Population size Transfer time T Average Std. dev.
q run 1 run 2 run 3 run 4 run 5 Tavg σT

25 585 592 580 579 588 584.8 5.45
50 574 578 589 579 589 581.8 6.83
100 584 590 576 583 585 583.6 5.03

Table 6.2 Transfer times to Mercury for different population sizes (FAL2, five different initial NC
populations)

For the less demanding FAL1, the trajectories are faster and the standard deviation of the
results is lower, as expected. However, unlike it may be expected, the quality of the solutions
does not depend considerably on the population size and thus on the search duration. How-
ever, as table 6.3 shows, the search duration depends considerably on the population size and
on the required accuracy. The dependence on population size is straightforward. A larger
population takes longer to converge against a single point of the actual search hypercube (or
better: a small subspace within the actual search hypercube), where no further improvement
is probable. Therefore, the population size had been introduced into the RDC epochal con-
vergence criterion, so that the EA is allowed to search longer when the population size is
large. The dependence of search duration on the final accuracy limit can be attributed to the
employed fitness function, which allots little value to further improvements in ∆rf and ∆vf ,
if the required accuracy is already achieved (∆Xf ≤ 1). Consequently, a more demanding

7 the inputs are only equal for t̄0 and diverge gradually due to the differences in the steering strategies
8 as it will be shown later, this similarity vanishes, if different NC output sets are used (see figure 6.5)
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Accuracy Average runtime [hours]
limit q = 25 q = 50 q = 100
FAL1 3.0 5.8 7.9
FAL2 5.0 6.8 11.6

Table 6.3 Average runtime on a personal computer with a 1.3 GHz AMD Athlon processor

accuracy requirement leaves more room for improvements, thus delaying the convergence of
the RDC algorithm. Typically, about 3 individuals (trajectories!) are tested per second, so
that – depending on the above mentioned factors – between about 25 000 and 250 000 indi-
viduals have been tested per InTrance-run. For the calculations that follow, a population size
of q = 50 and FAL2 has been used, if it is not stated otherwise.

6.1.3 Different Neurocontrollers

For the calculations above, a 12–30–3 neurocontroller had been used, where the input neurons
receive the actual solar sailcraft state and the actual target state in cartesian coordinates,
and the output neurons define directly the direction unit vector. Since this NC is only one
of many possible NCs that may be used for this trajectory optimization problem, other NCs
should be tested as well.

Within this section, different NCs (i.e. different NC input/output sets and different numbers
of hidden neurons/layers) are tested. Various different input sets X (table 6.4) and three
different output sets U (table 6.5) have been considered for this purpose.

Notation Input set X
(c) 12–� xSC and xT in cartesian coordinates
(c) 6–� xT − xSC in cartesian coordinates
(p) 12–� xSC and xT in polar coordinates
(e) 6–� xT − xSC as orbital element differences (aT − aSC, etc.)
(cp) 24–� xSC and xT in cartesian and polar coordinates
(cp) 12–� xT − xSC in cartesian and polar coordinates
(ce) 12–� xT − xSC in cartesian coordinates and as orbital element differences
(pe) 12–� xT − xSC in polar coordinates and as orbital element differences
(cpe) 36–� xSC and xT in cartesian and polar coordinates and as orbital elements
(cpe) 18–� xT − xSC in cartesian and polar coordinates and as orbital element

differences
(� = wildcard for hidden layer(s) and output layer)

Table 6.4 Tested NC input sets

Table 6.6 shows the results for the NCs that achieved the required final accuracy limit (FAL2)
in all of five InTrance-runs. It is to note that all NCs in table 6.6 represent direct steering
strategies. Surprisingly, all tested indirect steering strategies failed (at least in one run) to
achieve the required accuracy. On average, the best results (best solution, best average, low
standard deviation) have been obtained using the (cp) 24–30–3 (d) neurocontroller. It is also
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Notation Output set U Strategy type
�–5 (a) the NC provides the steering law weight vector cQ

(adapting the orbital elements to that of the target)
indirect

�–10 (m) the NC provides the steering law weight vector cL

(minimizing/maximizing the orbital elements)
indirect

�–3 (d) the NC provides the direction unit vector d, along
which the thrust force has to be maximized

direct

(� = wildcard for input layer and hidden layer(s))

Table 6.5 Tested NC output sets

NC topology Transfer time T Average Std. dev.
run 1 run 2 run 3 run 4 run 5 Tavg σT

(c) 12–10–3 (d) 592 582 587 593 577 586.2 6.76
(c) 12–20–3 (d) 579 583 579 577 580 579.6 2.19
(c) 12–30–3 (d) 574 578 589 579 589 581.8 6.83
(c) 12–40–3 (d) 583 579 575 578 578 578.6 2.88

(c) 12–15–15–3 (d) 577 578 577 581 592 581.0 6.36
(cp) 24–20–3 (d) 580 584 575 573 591 580.6 7.23
(cp) 24–30–3 (d) 579 576 573 578 575 576.2 2.39
(cp) 24–40–3 (d) 591 575 580 581 586 582.6 6.11

(cp) 24–15–15–3 (d) 575 579 578 580 583 579.0 2.92
(c) 6–30–3 (d) 591 592 583 579 581 585.2 5.93

(cpe) 36–30–3 (d) 583 589 579 584 579 582.8 4.15
(cpe) 18–30–3 (d) 581 591 585 577 587 584.2 5.40

Table 6.6 Transfer times to Mercury for different steering strategy sets and different NC topologies
(FAL2, reference launch date, five different initial NC populations)

quite counter-intuitive that only the NCs with cartesian inputs achieved the required accuracy
in all cases, although the motion of spacecraft in interplanetary space is better described in
polar coordinates or using orbital elements. This might be due to the fact that the variation
of the states is much larger in cartesian coordinates than in polar coordinates or in orbital
elements, providing thus a more substantial input to the NC.

The LDFs in figure 6.4 indicate that, independent of the number of hidden neurons, the op-
timal steering strategies for the (c) 12–�–3 (d) neurocontrollers and the (c) 24–�–3 (d) neu-
rocontrollers are quite similar. Consequently, the number of hidden neurons has – at least
for this trajectory optimization problem – little effect on the steering strategy that the NC
represents. Even NCs with a very small number of hidden neurons provide acceptable results
for this problem. In contrast to the results for different NC input sets and different hidden
neurons/layers, the LDFs in figure 6.5 show that the resulting optimal steering strategies
differ very much for different NC output sets. The LDFs for the indirect steering strategies
oscillate remarkably within small time scales, leading to different solutions for neighboring
launch dates, which is an unfavorable characteristic concerning the universality of the steer-
ing strategy. Apart from those results, direct steering strategies are more elegant and have
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6.4.1: (c) 12–�–3 (d) neurocontrollers 6.4.2: (c) 24–�–3 (d) neurocontrollers

Figure 6.4 Launch date fingerprints for different neurocontroller input sets and topologies

Figure 6.5 Launch date fingerprints for different neurocontroller output sets ((c) 12–30–� neuro-
controllers)

a broader applicability, since indirect steering strategies can not be used for trajectories that
turn hyperbolic9. Therefore, direct steering strategies have been used for the remainder of
this work.

9 note that Lagrange’s planetary equations in Gauss’ form are only valid for elliptical orbits
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6.1.4 Noise and Disturbing Forces

To assess the robustness of InTrance-generated steering strategies further, the best found
steering strategy so far (run 3 for the (cp) 24–30–3 (d) neurocontroller in section 6.1.2, see
table 6.6) has been evaluated under simulated NC input noise and under simulated random
disturbing forces acting on the spacecraft.

6.1.4.1 Neurocontroller Input Noise

The simulated NC input noise is intended to model random errors in the spacecraft’s sensed
position and velocity (not the position and the velocity itself!), as they occur due to errors
in the spacecraft’s autonomous sensors and/or errors in the measurement of the spacecraft’s
position and velocity from Earth. An n% NC input noise is simply simulated by multiplying
at each time step each true NC input value with a different normally distributed random
number, where the mean of the normal distribution is 1 and the standard deviation is n/100.

6.6.1: 5% NC input noise 6.6.2: 1% NC input noise

Figure 6.6 Accuracy of the NC steering strategy under NC input noise

Figure 6.6 shows the final accuracy of the NC steering strategy under an NC input noise of
5% and 1% respectively. For a real space mission, the precision of the spacecraft’s sensed
state is certainly far below 1%, so that the input noise has little effect on the accuracy of the
generated trajectory. The insufficient accuracy (∆Xf > 1) for launch dates other than the
nominal launch date is more due to the non-universality of the NC steering strategy itself
than due to the NC input noise, as figure 6.6 shows.

6.1.4.2 Disturbing Forces

The simulated disturbing acceleration acting on the spacecraft is intended to model the
stochastic effects due to the sailcraft itself, which have been explicitly excluded from the
simulation model (e.g. non-instantaneous attitude control maneuvers, non-flatness of the sail
film, etc.). It is not intended as a dedicated simulation of the gravitational disturbing forces
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of the planets, which are obviously not stochastic. A dedicated simulation of these forces has
not yet been undertaken. In any case, they are expected to be much smaller than the sails
”disturbing” forces, unless very close planetary fly-bys are involved, although they may have
significant secular effects.

Example: Given a mass of about 4.869 · 1024 kg, the gravitational acceleration of Venus at a

distance of 0.05AU is about 5.8 · 10−3 mm/s2 and thus only about 1% of the sail acceleration.

The disturbing acceleration is simulated by adding at each integration step an additional
acceleration term to the equations of motion. The magnitude of this term is a normally
distributed random number, where the mean of the normal distribution is 0 and the standard
deviation is 0 < ad < ac. Although this disturbing force model is quite crude and should for
a thorough mission analysis be replaced with a more sophisticated model, it is sufficient for
a rough estimate of the effects on the neurocontroller. Figure 6.7 shows the final accuracy of
the NC steering strategy under a random disturbing acceleration.

6.7.1: 0 ≤ ad ≤ 0.8 · 10−3 mm/s2 6.7.2: 0 ≤ ad ≤ 0.35mm/s2

Figure 6.7 Accuracy of the NC steering strategy under random disturbing accelerations

Figure 6.7 shows that the NC steering strategy is quite sensitive with respect to stochastic
disturbing accelerations. Within this very simple model, the required accuracy (∆Xf < 1)
can be met in the worst case up to only ad ≈ 0.18 ·10−3 mm/s2, and in the average case up to
ad ≈ 0.8 · 10−3 mm/s2. Consequently, for a thorough trajectory design, as it is required for a
real mission, a more realistic spacecraft model must be used. Since the translational motion
is highly interrelated with the rotational motion, this model should consider all six degrees of
freedom. Also the billowing, wrinkling and aging of the sail must be studied through FEM
simulations and in-space tests. In this case, also a complete gravitational solar system model
should be used. However, even those models can not include the random variation of the solar
constant10. Nonetheless, this does not prevent using InTrance for the trajectory optimization
of a real mission, since at any time a new optimal trajectory can be calculated in real-time
(on Earth or on-board).

10 approx. 0.1% over days [11]
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6.1.5 Optimization of the Launch Date

To find the optimal launch date for the Mercury rendezvous, InTrance was used to determine
the shortest orbit transfer. Since no rendezvous with the target body but only with the target
orbit is required, the time span for launch was set to the orbital period of the initial body11,
i.e. to 1 year. Having run InTrance five times with different initial NC populations, the
shortest found orbit transfer takes T = 510 days to reach the orbit of Mercury. For this orbit
transfer, the solar sailcraft’s angular position at launch is ϕSC(t̄0)

.= −2.90 and at arrival
ϕSC(t̄0 + T ) .= −0.83. By scanning the planetary positions, it can be found that within a
1 year-interval around the reference launch date (MJD 52654.5), the constellation of Earth
and Mercury is most similar to that of the optimal orbit transfer solution for a launch at
27 Mar 03 (where ϕEarth(MJD 52725.8) .= −3.02 and ϕMercury(MJD 53235.8) .= −0.83).

To find the optimal Mercury rendezvous, InTrance was run (five times) for the launch date
that was expected to be optimal (MJD 52725.8). However, to allow the steering strategy to
compensate for the small difference in Earth’s angular position at launch, the launch date was
not prescribed exactly, but the EA was allowed to choose the launch date from the interval
[MJD 52724.0,MJD 52729.0]. The maximum transfer time was set to Tmax = 600 days (with
τ = 600).

Figure 6.8 Mercury rendezvous trajectories for five different initial NC populations (optimized
launch date)

Figure 6.8 shows that all five InTrance-trajectories differ little, so that there can be some
confidence that the best found trajectory is close to the global optimum. Taking 502 days to
rendezvous Mercury, the best InTrance-trajectory (figure 6.9.1) is now 163 days (32%) faster
than the reference trajectory. The final distance to Mercury is ∆rf ≈ 20 000 km and the final
relative velocity to Mercury is ∆vf ≈ 20 m/s, both being well better than the required values
(FAL2). The optimal launch date was found to be 31 Mar 03, 75 days later than the reference
launch date. It is to note that the optimal transfer time to rendezvous Mercury is even better
than the previously found ”optimal” orbit transfer time of 510 days, which is obviously not
optimal ex post. This might be attributed to the larger time span for launch (1 year instead

11 it is to note that the orbital period of the target body is not relevant for this problem
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6.9.1: Best InTrance-trajectory 6.9.2: Steering angles

Figure 6.9 Mercury rendezvous (optimized launch date)

of 5 days), which makes the search more difficult for the EA, since different launch dates
within a 1 year-time span require significantly different steering strategies, whereas the good
steering strategies within a 5 day-time span are more similar.

6.2 Near-Earth Asteroid Rendezvous Mission

As another test case to assess the performance of InTrance, a rendezvous trajectory to near-
Earth asteroid 1996FG3 for an ideal solar sailcraft with a characteristic acceleration of ac =
0.14 mm/s2, calculated by Leipold et al. [47, 86] using a LTOM, has been chosen. This
reference trajectory launches at Earth at 13 Aug 06 (MJD 53960.5) and takes 1640 days to
rendezvous 1996FG3, if the solar sailcraft is inserted directly into an interplanetary trajectory
with an hyperbolic excess energy of C3 = 4km2/s2.

6.2.1 Convergence Behavior and Stability

To evaluate its convergence behavior and stability, InTrance was run five times – using dif-
ferent initial NC populations – for the same launch date as in [47, 86]. For the calculations
within this section, a (cp) 24–30–3 (d) neurocontroller has been used. The maximum transfer
time was set to Tmax = 1800 days. For discretization, this time interval was cut into τ = 360
finite elements, so that the solar sailcraft is ”allowed” to change its attitude once every five
days. The hyperbolic excess energy of the reference trajectory has been removed, since it was
considered to be counter-productive for transfer time minimization (see also section 6.2.3).
The final accuracy limit was set to ∆rf,max = 300 000 km and ∆vf,max = 100m/s.

The best found InTrance-trajectory (figure 6.10.1) is 135 days faster (9.0%) than the reference
trajectory, reducing at the same time the C3-requirement from 4 km2/s2 to 0 km2/s2 and thus
permitting a reduction of the launcher requirements and eventually of launch costs. The
final distance to 1996FG3 is ∆rf ≈ 200 000 km and the final relative velocity to 1996FG3 is



78 InTrance Evaluation

6.10.1: Best InTrance-trajectory 6.10.2: Steering angles

Figure 6.10 1996FG3 rendezvous (reference launch date)

∆vf ≈ 65 m/s, both being well better than the required values.

6.2.2 Optimization of the Launch Date

To find the optimal launch date for the 1996FG3 rendezvous, InTrance was used to determine
the shortest orbit transfer. Having run InTrance (five times), the shortest found orbit transfer
takes T = 1415 days to reach the orbit of 1996FG3. For this transfer, the solar sailcraft’s
angular position at launch is ϕSC(t̄0)

.= 0.38 and at arrival ϕSC(t̄0+T ) .= 1.00. By scanning the
planetary positions, it can be found that within a 1 year-interval around the reference launch
date (MJD 53960.5), the constellation of Earth and 1996FG3 is most similar to that of the
optimal orbit transfer solution for a launch at 29 Oct 05 (where ϕEarth(MJD 53672.5) = 0.63
and ϕ1996FG3(MJD 55087.5) = 0.98).

To find the optimal 1996FG3 rendezvous, InTrance was run (five times) for the launch date
that was expected to be optimal (MJD 53672.5). However, to allow the steering strategy to
compensate for the small difference in Earth’s and 1996FG3’s angular position, the launch date
was not prescribed exactly, but the EA was allowed to choose the launch date from the interval
[MJD 53658.5,MJD 53672.5]. The maximum transfer time was set to Tmax = 1600 days (with
τ = 320).

Figures 6.11 and 6.12 show the results of the five InTrance-runs. Although the variation of the
sail steering angles differs considerably for the five steering strategies (see figure 6.12.2), the
respective trajectories differ only little in transfer time (figure 6.11), which may indicate some
robustness concerning the required sail steering accuracy for a real mission. The worst found
trajectory (T = 1460 days) takes only 1.7% longer to rendezvous 1996FG3 than the best one,
so that there can be some confidence that the best found trajectory (figure 6.12.1) is close
to the global optimum. Taking 1435 days to rendezvous 1996FG3, it is now 205 days (14%)
faster than the reference trajectory. The final distance to 1996FG3 is ∆rf ≈ 267 000 km and
the final relative velocity to Mercury is ∆vf ≈ 89 m/s, both being better than the required
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Figure 6.11 1996FG3 rendezvous trajectories for five different initial NC populations (optimized
launch date)

6.12.1: Best InTrance-trajectory 6.12.2: Steering angles

Figure 6.12 1996FG3 rendezvous (optimized launch date)

values. The optimal launch date was found to be 22 Oct 05, 295 days earlier than the reference
launch date. It is to note that the optimal transfer time to rendezvous 1996FG3 is slightly
worse than the previously found ”optimal” orbit transfer time of 1415 days. This might be
attributed to the slightly different constellation of the bodies at launch and arrival.

6.2.3 Interplanetary Insertion with Hyperbolic Excess Energy

For the hyperbolic excess energy of the reference trajectory (C3 = 4km2/s2), the best found
InTrance-trajectory yields a minimum transfer time of 1630 days for the reference launch
date (figure 6.13.1), which is only 10 days faster than the reference trajectory. Since the
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optimal direction of the hyperbolic excess velocity vector v∞ is not evident, it was encoded
additionally on the chromosome, leaving it to the EA to co-evolve it with the NC.

6.13.1: Reference launch date 6.13.2: Optimized launch date

Figure 6.13 1996FG3 rendezvous with C3 = 4km2/s2

Figure 6.13 shows that it is really counter-productive (although optimal for this launch date)
to raise the aphelion of the trajectory immediately at launch, because the solar sailcraft is
”thrown” far away from the sun, where it is not able to produce reasonable thrust.

To find out whether an hyperbolic excess energy of 4 km2/s2 could be spent more efficiently,
InTrance was run to find the optimal orbit transfer. A constellation, which is similar to the
constellation of the optimal orbit transfer was found for a launch at 12 Feb 06, a half year
earlier than the reference launch date. Figure 6.13.2 shows the best found trajectory for this
launch date. Applying also C3 = 4km2/s2, this trajectory takes only 944 days to rendezvous
1996FG3, being 696 days (74%) faster than the reference trajectory. Here, the solar sailcraft
is inserted into an interplanetary trajectory with an hyperbolic excess velocity vector in the
reverse direction of Earth’s velocity vector. This ”throws” the solar sailcraft to the sun, where
it is able to produce reasonable thrust.

6.3 Fast Pluto Fly-By Mission

A fast Pluto fly-by trajectory for an advanced ideal solar sailcraft with a characteristic accel-
eration of ac = 1.0 mm/s2, calculated by Leipold [51, 52] using a LTOM, has been chosen as
the third test case to assess the performance of InTrance. The reference trajectory launches
at Earth at 05 Feb 03 (MJD 52675.5) and takes 13.15 years (4805 days) to reach Pluto, if the
solar sailcraft is inserted directly into an interplanetary trajectory with zero hyperbolic excess
energy. Since for trajectories that employ a solar photonic assist maneuver, the transfer time
does not only depend on the characteristic acceleration of the solar sailcraft but also on the
minimal solar distance rmin (see section 6.3.2), the respective value of the reference trajectory
(rmin = 0.49 AU) has been chosen to allow a fair comparison.
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6.3.1 Convergence Behavior and Stability

InTrance was run five times – using different initial NC populations – for the same launch
date as in [51, 52]. For the calculations within this section, a (cp) 12–30–3 (d) neurocontroller
has been used. The maximum transfer time was set to Tmax = 5000 days. For discretization,
this time interval was cut into τ = 2000 finite elements, so that the solar sailcraft is ”allowed”
to change its attitude once every 2.5 days.

Figure 6.14 Fast Pluto fly-by trajectories for five different initial NC populations (rmin = 0.49 AU)

6.15.1: Best InTrance-trajectory
6.15.2: Total (kinetic+potential) energy

and steering angles

Figure 6.15 Fast Pluto fly-by using a double solar photonic assist maneuver (rmin = 0.49 AU)

Figures 6.14 and 6.15 show that the variation of the steering angles and the trajectories differ
very much for the five InTrance-runs, so that one can not be confident that the best found
trajectory is very close to the global optimum. However, all five trajectories have much shorter
transfer times than the reference trajectory, since they employ a double solar photonic assist,
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whereas the reference trajectory performs only a single one. The best InTrance-trajectory
(figure 6.15.1) is 837.5 days (21%) faster than the reference trajectory, revealing that the latter
is again far from the global optimum. The final distance from Pluto is ∆rf ≈ 52 000 km, being
well better than the required value of ∆rf,max = 1000 000 km, and the fly-by velocity at Pluto
is ∆vf = 21.1 km/s.

6.3.2 Close Solar Approach

Figure 6.16 Fast Pluto fly-by trajectories for five different initial NC populations (rmin = 0.10 AU)

6.17.1: Best InTrance-trajectory
6.17.2: Total (kinetic+potential) energy

and steering angles

Figure 6.17 Fast Pluto fly-by using a triple solar photonic assist maneuver (rmin = 0.10 AU)

If the solar sailcraft is allowed to approach the sun as close as rmin = 0.1 AU, InTrance
even finds a triple solar photonic assist trajectory, which approximately doubles the solar
sailcraft’s solar system escape velocity, so that the fly-by velocity at Pluto is ∆vf = 41.8 km/s
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(∆rf ≈ 450 km). The transfer time is considerably reduced to 5.85 years (2137.5 days)12.
Again, the steering angles (figure 6.17.1) and the trajectories (figure 6.16) differ very much,
so that one can not be not confident that the best found trajectory is very close to the global
optimum.

6.4 Minimal Orbit Transfer Times for Ideal Solar Sailcraft

As the last benchmark for the evaluation of InTrance performance for solar sailcraft trajectory
optimization, minimal transfer times to various solar system bodies13 have been calculated.
Sauer gives minimal transfer times to Mercury, Venus, and Mars for ideal high-performance
sailcraft with 0.5 mm/s2 . ac . 2.5 mm/s2 (figure 6.18) [80]. To verify the transfer times that

Figure 6.18 Upper and lower bound for minimal transfer times to Mercury, Venus, and Mars
that are given by Sauer [80] (only lower bound for Mercury, diagram taken from
Wright [98])

are given by Sauer and to extend them to solar sailcraft of moderate14 (ac . 0.5 mm/s2)
and extremely high (ac & 2.5 mm/s2) performance, minimal orbit transfer times to various
targets have been calculated for characteristic accelerations in the range 0.1 mm/s2 ≤ ac ≤
10.0 mm/s2. The InTrance-results are presented in figure 6.19. They are consistent with
those in figure 6.18.15 The results reveal that the transfer times can be described for low
12 However, for such a close solar approach the thermal load on the sail according to equation (2.9) would

be significantly higher (Tmax(r = 0.1AU) ≈ 730K for an Al|Cr-coated sail), exceeding the temperature
limit of conventional polyimide substrates like Kaptonr

13 and for a 10◦ inclination change at 1AU as an additional test case
14 Figure 6.18 gives evidence that solar sailcraft trajectories are typically presented for high-performance

sailcraft. This limitation is mainly caused by the drawbacks of traditional local trajectory optimizers:
trajectories for moderate-performance sailcraft require multiple revolutions around the sun to reach the
target body/orbit. For such trajectories, an adequate initial guess is very hard to find.

15 It is to note that the the results are neither valid for a given launch date nor are they average values.
Since no rendezvous with the target body but only with its orbit was required, they represent the lower
bound for the transfer time. However, they are valid rendezvous trajectories for a single constellation of
the initial and the target body.
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6.19.1: 0.1mm/s2 ≤ ac ≤ 1.0mm/s2 6.19.2: 0.1mm/s2 ≤ ac ≤ 10.0mm/s2

Figure 6.19 Minimum orbit transfer times for ideal solar sailcraft

characteristic accelerations with a very simple approximation function of the form

Tmin

1 day
=

c1

( ac
1mm/s2

)c2

e.g.

Tmin,Mercury

1 day
=

255
ac

1mm/s2

This approximation gives for 0.1 mm/s2 ≤ ac ≤ 0.75 mm/s2 a maximum error of 4.2%. For
1996FG3,

Tmin,1996FG3

1 day
=

146
( ac
1mm/s2

)1.127

gives for 0.1 mm/s2 ≤ ac ≤ 1.0 mm/s2 a maximum error of 5.5%. The coefficients c1 and c2

depend on the target body. It can be speculated that they are a function of the initial and
the target body’s orbital elements (quod esset demonstrandum).

6.5 Multiple Near-Earth Asteroid Rendezvous Using SEP

The assessment of InTrance trajectory optimization performance for EP spacecraft is more
difficult than for solar sailcraft, since suitable reference trajectories are hard to find in the
literature. This is due to the fact that the complete EP system models are typically not given.
The most suitable set of trajectories that was found for reference is for a proposed multiple
NEA sample return mission16, called ”Hera”, which employs a spacecraft with a cluster of
16 mission proposal to NASA under the lead of the Arkansas-Oklahoma Center for Space and Planetary

Science
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three NSTAR thrusters [4] to return samples from three different NEAs to Earth within a
mission duration of 4.83 years. However, only a few technical data (table 6.7) as well as the
launch and arrival dates at the different target bodies, and the consumed propellant for the
four transfers could be obtained for this mission (table 6.8).

Main propulsion system 3 NSTAR thrusters
Power generation by GaAs solar panels (at 1AU) 6.0 kW
Maximum input power per PPU 2.5 kW
Exponent for variation of power with solar distance (κ) ∼ 1.7
Dry mass 676.3 kg
Propellant mass (Xenon) 365.8 kg
Hydrazine propellant mass for proximity operations 3× 20.0 kg
Launch vehicle Delta 7925-10

Table 6.7 Technical data for the Hera mission (Baseline-V1.02) [4]

ConsumedTransfer time
propellant

Arrival date Body Stay time Launch date

Earth 15 Jan 06
200 days 52.6 kg 03 Aug 06 1999AO10 99.0 days 10Nov 06
750 days 209.1 kg 29 Nov 08 2000AG6 98.2 days 07 Mar 09
230 days 80.8 kg 23Oct 09 1989UQ 205.5 days 17May 10
180 days 23.3 kg 13 Nov 10 Earth

Table 6.8 Hera mission parameters [4]

Nevertheless, a re-calculation of the mission using InTrance is possible. The hyperbolic excess
energy for interplanetary injection was not given for the first leg of the reference trajectory.
However, the launch vehicle is the same as for the Mars Global Surveyor (MGS) mission
and the launch mass is also similar (1102 kg instead of 1060 kg). For the interplanetary or-
bit insertion of the MGS spacecraft, the launcher provided an hyperbolic excess energy of
about 10 km2/s2 [72]. Therefore, the same value was taken as the maximum C3 for the
InTrance-calculations. However, InTrance, which was allowed to choose C3 from the inter-
val [0 km2/s2, 10 km2/s2], found C3 = 4.1 km2/s2 to be optimal. The primary goal of the
InTrance-calculations was to minimize the consumed propellant.17 For this purpose, the orig-
inal Hera transfer times have been taken as Tmax, and the trajectories have been optimized
with respect to minimal propellant consumption. For all calculations, a (cp) 25–30–4 (d)
neurocontroller has been used.

Figure 6.20 shows the best found InTrance-trajectories. The thin trajectory segments denote
coast arcs, where the thrust is turned off. Table 6.9 shows that the InTrance-trajectories
consume about 10% less propellant for all legs.18

17 However, trajectories with shorter transfer times could have been found by InTrance, if they had been
also optimal with respect to propellant consumption (this was not the case).

18 The results are very accurate with respect to the terminal constraint. The accuracy of the reference
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Figure 6.20 Re-calculated InTrance-trajectories for the Hera mission

Consumed propellant Saved ”Saved Trajectory accuracy
Trajectory leg Reference InTrance propellant ∆V ” ∆rf ∆vf

[kg] [kg] [kg] [m/s]
[
103km

]
[m/s]

Earth-1999AO10 52.6 46.1 6.5 182 10 10
1999AO10-2000AG6 209.1 191.8 17.3 615 45 45
2000AG6-1989UQ 80.8 72.9 7.9 320 4 4
1989UQ-Earth 23.2 20.5 2.7 118

Table 6.9 Comparison of the Hera reference trajectories with the best found InTrance-trajectories

trajectories is not given in [4]. Nevertheless, the propellant savings can not be attributed to a poorer
accuracy of the InTrance-trajectories, since the ”saved ∆V ” (the ∆V that the saved propellant may
provide, assuming a conservative Isp = 3000 s) is much larger than ∆vf .
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Trajectory analysis and design is a crucial part of the feasibility analysis of any space mis-
sion, since it confines the mission objectives and sets the performance requirements for the
propulsion system. Those requirements determine, whether or not – using a given propulsion
system – the mission is feasible. InTrance is intended as a tool to support mission analysis.

Within this chapter, the suitability of InTrance as a mission analysis tool is demonstrated
by performing trajectory analyses for some relevant interplanetary space missions. Those
analyses have three major goals:

1. to assess the performance of solar sail propulsion with respect to chemical and solar
electric propulsion for interplanetary missions. This is done exemplary for missions to
near-Earth asteroids (NEAs, section 7.2) and to Mercury (section 7.3).

2. to demonstrate that for solar sailcraft mission analysis the non-perfect reflectivity of the
solar sail must be considered through an appropriate SRP force model like the standard
SRP force model according to section 2.2.3.4 (section 7.1). The common simplification
that the non-perfect reflectivity of the sail can be taken into account by using an overall
efficiency factor should only be made for very preliminary mission feasibility analysis.
Consequently, the standard SRP force model has been used for all calculations within
this chapter.

3. to demonstrate that InTrance can also be used to support mission analysis for low-thrust
propulsion systems other than solar sails. This is done exemplary for a piloted Mars
mission (section 7.4).

7.1 Minimal Orbit Transfer Times for Non-Ideal Solar Sail-
craft

Solar sailcraft trajectory/mission analyses usually employ the ideal or the simplified SRP
force model (see section 2.2.3.3 and 2.2.3.5).1 This is mainly due to the fact that, using the
standard SRP force model (see section 2.2.3.4), it is difficult to conceive an adequate initial
guess for the variation of the sail steering angles, since the LSLs give only the locally optimal
thrust direction, from which the corresponding sail attitude can not be obtained analytically.
From the trajectory analysts point of view, the ideal and the simplified SRP force models
are equivalent, since the shape of both SRP force ”bubbles” is identical (see section 2.2.3.6).
Therefore, a lower sail efficiency η can always be offset with a proportionally larger sail area,
Asimplified = Aideal/η, so that ac,simplified = ac,ideal. Thus, from the perspective of trajectory
analysis, both SRP force models describe a perfectly reflecting or ideal solar sailcraft. This
equivalency is not the case for the standard SRP force model, even if ac,standard = ac,ideal is
chosen, since the shape of the SRP force ”bubbles” is different.

1 The only known calculations for the standard SRP force model have been done in [19], where a simple
Earth-Venus-transfer and a simple Earth-Mars-transfer were calculated using a local trajectory optimiza-
tion method (direct collocation method).
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Within this section, the minimal orbit transfer times for solar sailcraft are calculated using the
more realistic standard SRP force model (non-perfectly reflecting or non-ideal solar sailcraft).
The results are compared to the transfer times that have been obtained within section 6.4 for
perfectly reflecting (ideal) solar sailcraft, using the ideal/simplified SRP force model. For all
calculations, the size of the ”bubbles” was the same (ac,standard = ac,ideal).

Figure 7.1 shows a comparison of the minimal transfer times to various solar system bodies
for ideal and for non-ideal solar sailcraft.

Figure 7.1 Comparison of minimum orbit transfer times for ideal and non-ideal solar sailcraft

As the results show, there is a considerable increase (approx. 5 − 15%2) in minimal orbit
transfer time, if the standard SRP force model is used. One possible explanation for these
results is that InTrance has more difficulties in finding trajectories for non-ideal solar sails,
and thus fails to find globally optimal solutions. Although a part of the differences might be
attributed to this cause, this explanation is unlikely to explain the entire differences. The
results are in accordance with the result in [19], where an increase of 7.8% in transfer time had
been obtained for a simple Earth-Mars-transfer (ac

.= 1.5 mm/s2). For a simple Earth-Venus-
transfer, an increase of even 24% in transfer time (306 days for ac

.= 0.55 mm/s2) had been
obtained in [19], which suggests that the trajectory is far from the global optimum (InTrance
yields a minimum transfer time of 268 days for exactly the same problem).

The above results demonstrate that for a thorough mission analysis the non-perfect reflec-
tivity of the solar sail must be considered through an appropriate SRP force model. The
simplification, that the non-perfect reflectivity of the sail can be taken into account by using
an overall efficiency factor η, should only be made for very preliminary mission feasibility
analyses. Consequently, the standard SRP force model has been used for all calculations
within this chapter.

2 being larger for trajectories that require large sail cone angles, where the difference between the ideal and
the non-ideal bubble is larger (see figure 2.10)
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7.2 Near-Earth Asteroid Rendezvous and Sample Return Mis-
sions

NEAs are a very promising category of target bodies for the first solar sail mission(s), since
they are of great scientific relevance and can be accessed relatively easily. Within this section,
some missions to NEAs (rendezvous, multiple rendezvous, and sample return) are investigated,
comparing solar sail propulsion with solar electric propulsion.

7.2.1 Mission Objectives

Comets and most of the asteroids are in some sense the fossils of the solar system [21]. They
vary highly in size, surface properties, composition, and probably origin. Especially the un-
differentiated primitive carbonaceous (C type) asteroids are expected to hold key information
for understanding the origin of the solar system and the formation of the planets, since they
are – unlike the planets – primitive bodies that have undergone little physical and chemi-
cal alteration, and thus represent most closely the properties of the primordial solar nebula.
Therefore, they have a very high exploration priority [47]. C type asteroids are the largest
taxonomic class (∼ 40%), but most of them are located in the outer asteroid belt beyond
2.7 AU, where they are not easily accessible [31].

Although a large amount of asteroid samples exists on Earth as meteorites, many questions
are yet unresolved. One of the most important unresolved questions is the linkage between
asteroid classes and meteorite classes. Many asteroid classes have reflectance spectra that are
similar to those of meteorites. For example, C type asteroids are supposed to be linked to
chondritic meteorites due to their similar spectra, indicating carbon-rich material. However,
some asteroid types have no meteoritic analogue in their spectra, like the P and D type
asteroids, which are supposed to be even more primitive than the C type asteroids and to
carry organic compounds [31]. It is also curious that no large asteroid class seems to match
the meteorite spectra of ordinary chondrites, the most common meteoritic samples [31].

Near-Earth objects (NEOs) are asteroids (NEAs) and short-period comets with orbits that
intersect or pass near the orbit of Earth. About 650 NEOs with diameters & 1 km are
currently (May 03) known [5], but the entire population contains perhaps more than 1 000
objects of this size [21]. They pose a significant hazard to human civilization and to life on
Earth. It is today widely accepted that NEO impacts have caused at least one mass extinction
(65 million years ago at the Cretaceous/Tertiary boundary), and they are suspected to have
caused several global catastrophes before [93]. Even NEOs that do not intersect the orbit of
Earth may evolve into Earth-crossers, since their orbits are chaotic, having a relatively short
dynamical lifetime (∼ 107 years) [39][31]. One day, it might become necessary to prevent a
specific object from impacting the Earth by nudging it out of its orbit. To be able to do this,
the bulk properties of NEOs (material strengths, composition, structure, moments of inertia,
etc.) should be determined as soon as possible [44].

Since NEAs are probably fragments of main belt asteroids, they are believed to be a repre-
sentative sample of them [47]. Unlike their parent bodies, some NEOs are the most readily
accessible extraterrestrial bodies. The energy requirement to rendezvous with some of them
is less than to land on the Moon’s surface [21]. Since relatively short transfer times to such
bodies are expected even for solar sails with very moderate performance, they are ideal targets
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for a first technical demonstration of solar sail propulsion, although the true potential and
advantage of solar sails over other propulsion systems is expected to become evident only for
high-∆V -missions.

Within this section, the suitability of solar sail propulsion for missions to selected NEAs
is assessed and compared to SEP. To allow a better comparison, the target objects of the
ENEAS mission [47] and the Hera mission [4] have been adopted (see table 7.1). For a real
mission, of course, the target object(s) have to be chosen as to maximize the scientific return
on investment.

Asteroid a [AU] e ι [◦] Spectral type
1989UQ 0.915 0.265 1.291 ?
1996FG3 1.054 0.350 1.991 C
1999AO10 0.912 0.110 2.628 ?
2000AG6 1.015 0.190 2.474 ?

Table 7.1 Orbital and physical parameters of selected near-Earth asteroids [5, 6]

7.2.2 Near-Earth Asteroid Rendezvous Mission

7.2.2.1 Mission Analysis for Solar Sailcraft

Based on the successful deployment experiment at DLR in December 1999 (see section 2.2.2),
a dedicated mission for the exploration of NEAs with solar sailcraft (ENEAS) had been
proposed in August 2000 by DLR in cooperation with the Westfälische Wilhelms-Universität
at Münster (Germany) as a candidate within the German small satellite program for space
sciences [47, 86]. ENEAS is intended to feature a deployable (50m)2 solar sail that is capable
to transport a micro-satellite with a mass of 75 kg (with a scientific payload of 5 kg, CCD
camera + IR spectrometer + magnetometer) to a NEA within less than five years. Table 7.2
summarizes the ENEAS parameters.

Sail area A (50 m)2

Sail assembly mass mSA 73 kg
Sail assembly loading σSA 29.2 g/m2

Payload mass (incl. spacecraft bus) mPL 75 kg
Total sailcraft mass m 148 kg
Sailcraft loading σ 59.2 g/m2

Characteristic acceleration ac 0.140 mm/s2

Characteristic SRP force Fc 20.7 mN

Table 7.2 Parameters for the ENEAS solar sailcraft

1996FG3 had been chosen as the target body for the ENEAS mission, since it has orbital
elements not too different from that of Earth and since it is an object of exceptional scientific
relevance. Observations [67, 71] indicate that 1996FG3 is a binary C type asteroid, consisting
of a primary body with a rotation period of P1 ≈ 3.6 hours and a secondary body with an
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orbital period of P ≈ 16 hours. Figure 7.2 sketches the physical parameters of the 1996FG3

system. Based on the typical C type albedo of 0.06, the primary body has an estimated
diameter of d1 ≈ 1.4 km and the secondary body an estimated diameter of d2 ≈ 0.4 km.
The separation of the two bodies is approx. 1.7 times the diameter of the primary body.
The determined average bulk density is ρ̄ = 1.4 ± 0.3 g/cm3, which is highly suggestive of a
”rubble pile” structure. ENEAS is intended to determine the morphological properties, the
compositional properties, and the evolution of the 1996FG3 system [47].

Figure 7.2 Sketch of some physical properties for selected NEAs [5, 6, 31, 71]

Since for solar sailcraft of moderate performance it is difficult and time consuming to gain
orbital energy in the Earth’s gravitational field, the launcher inserts the ENEAS sailcraft
directly into an interplanetary trajectory. After injection, the sail and the attitude control
mast are deployed in a 3-axis stabilized mode. Then, the sail is oriented to follow the pre-
calculated attitude profile that leads to an optimal interplanetary transfer trajectory. During
the transfer, the ENEAS sailcraft runs almost autonomously, so that ground monitoring is
carried out on a weekly basis only [86]. The trajectory optimization results in section 6.2 show
that, assuming a perfectly reflecting solar sail, the ENEAS sailcraft can reach 1996FG3 within
3.93 years (1435 days), if it is inserted with zero hyperbolic excess energy (see figure 6.12.1)
or even within 2.58 years, if it is inserted with an hyperbolic excess energy of C3 = 4km2/s2

(figure 6.13.2). InTrance trajectory optimization using the standard SRP force model, which
takes into account the non-perfect reflectivity of the ENEAS sail, yields an optimal transfer
time of 4.18 years (1535 days) for C3 = 0km2/s2 (figure 7.3.1) and 2.74 years (1000 days) for
C3 = 4km2/s2 (figure 7.3.2), being considerably larger (7% and 6% respectively) than for an
ideal solar sail. Thus, it would be very beneficial, if the launcher could provide some hyperbolic
excess energy for interplanetary injection, but it is not absolutely necessary to accomplish the
mission. For hyperbolic excess velocities larger than about 4 km2/s2 the transfer time further
decreases, however just slightly (figure 7.4).

For a first solar sail technology demonstration mission in deep space, a target object might
be required that is still easier accessible than 1996FG3, to keep operation costs low and to
provide as quickly as possible feedback for the tested technologies. Despite its small dimension,
the NEA 1999AO10 might be a potential target object for such a technology demonstration
mission. With C3 = 0km2/s2 and ac = 0.14 mm/s2, as InTrance-optimization shows, it could
be reached with the ENEAS sailcraft within nearly half of the time (2.14 years / 780 days)
that is required for 1996FG3. During the transfer and at the asteroid, critical technologies
(attitude control, autonomy, sail aging due to the erosive effects of the space environment,
close proximity operations at the asteroid, etc.) could be tested for relatively low cost.
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7.3.1: C3 = 0km2/s2 7.3.2: C3 = 4km2/s2

Figure 7.3 ENEAS trajectory options

Figure 7.4 Influence of C3 on ENEAS transfer time

7.2.2.2 Mission Analysis for SEP Spacecraft

To assess the capability of solar sail propulsion for this NEA rendezvous mission, the relevant
mission and system parameters have to be compared with other propulsion systems like SEP
systems. Therefore, InTrance has been applied for the calculation of the trajectories for an
SEP spacecraft that accomplishes the same mission objective (i.e. deliver a 75 kg payload to
1996FG3). The spacecraft model that is used for comparison, called ENEASEP, employs a
single NSTAR thruster for propulsion and two SCARLET solar arrays for power generation.
Its parameters are given in table 7.3.

As mentioned in section 3.1.1, SEP spacecraft trajectory optimization is a multi-objective
problem, since trajectories may not only be optimized with respect to transfer time but
also with respect to the required propellant mass, and usually a trade-off between both op-
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Payload mass (incl. spacecraft bus) mPL 75.0 kg
Ion propulsion system mass mThr 48.0 kg
Solar array mass 2mSAW 55.4 kg
Dry mass (without propellant and tank) mdry 178.4 kg
Maximum thrust Fmax 71.3 mN
Total launch mass (mP = 51 kg, mTank = 5.1 kg) m0 234.5 kg
Maximum acceleration with full tank a0 0.304 mm/s2

Maximum acceleration with (near-)empty tank af 0.400 mm/s2

Table 7.3 Parameters for the ENEASEP spacecraft

timization objectives has to be made, so that the ”optimal” solution is only one of many
Pareto-optimal solutions (see section 3.1.1). Figure 7.5 exemplifies two InTrance-solutions
for this problem on (or at least close to) the Pareto-optimal front. Thus, using spacecraft
with a single NSTAR thruster, the same payload could be delivered to 1996FG3 within 294
days (if mP = 46.8 kg) or even within 270 days, if slightly more propellant is consumed
(mP = 51.0 kg).

7.5.1: mP = 46.8 kg 7.5.2: mP = 51.0 kg

Figure 7.5 ENEASEP trajectory options

7.2.2.3 Comparison of the Solar Sail Option and the SEP Option

The results demonstrate that for this mission, solar sailcraft is clearly outperformed by the
SEP option, if only the transfer time is considered. This is not surprising, since the required
velocity increment for the orbit transfer is moderate (∆V (mP = 46.8 kg) = 6.7 km/s and
∆V (mP = 51.0 kg) = 7.0 km/s). However, the launch mass of ENEASEP is larger (m0 =
229.9 kg and m0 = 234.5 kg respectively) than for the solar sail option (m = 148.0 kg),
requiring eventually a heavier and thus more expensive launch vehicle. If ground operation
costs can be kept low (e.g. due to a high on-board autonomy during transfer), and if the
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transfer time plays a subordinate role with respect to cost, the solar sail might be the favorable
option for such a NEA rendezvous mission.

7.2.3 Near-Earth Asteroid Sample Return Mission

7.2.3.1 Mission Analysis for Solar Sailcraft

The ENEAS sailcraft is intended to rendezvous 1996FG3 for remote sensing with a minimum
scientific payload of 5 kg (CCD camera + IR spectrometer + magnetometer). To study the
1996FG3 system in more detail, it would be necessary to place a lander on the surface of the
asteroid (e.g. for mass spectrometry and/or alpha-proton spectrometry). Some investigations
(e.g. micro-structure and isotope analysis) to determine the age and the evolution of 1996FG3

could probably only be accomplished by taking samples of the asteroid back to Earth. Due to
their high ∆V -capability, solar sailcraft are supposed to be especially capable to perform such
sample return missions. However, compared to the ENEAS rendezvous mission, the payload
has to be extended considerably, including a lander and a sample return capsule. The key
questions for the design of such an ENEAS-SR (sample return) mission are:

Q1: What is the maximum acceptable mission duration Tmax?

Q2: What is the minimum characteristic acceleration ac,min to perform the mission in Tmax?

Q3: What is the expected sail assembly loading σSA and sail dimension s for the solar
sailcraft?

Q4: What is the maximum payload mass to get ac,min for the specified σSA and s?

Answer to Q1: At present, the maximum acceptable mission duration seems to be determined
by the trip time that is required with chemical propulsion, including (eventually multiple)
gravity assist maneuvers. Due to the relatively large ∆V -requirement for a 1996FG3 sample
return mission with a chemical propulsion system, which was calculated to be about 8.7 km/s,
such a mission would require either heavy spacecraft and thus an expensive launch vehicle,
resulting in a short trip time of 1-2 years, or several gravity assists, resulting in a long
trip time, similar to the Rosetta mission, which was originally planned to rendezvous comet
46P/Wirtanen with three intermediate gravity assist maneuvers (Mars-Earth-Earth) and a
trip time of approx. 9 years. Since the rationale for using solar sailcraft aims at low-cost
missions, only the gravity assist option is a reasonable chemical alternative. Thus, for the
ENEAS-SR mission, a total mission duration of ten years or less seems to be acceptable.

Answer to Q2: Trajectory calculations using InTrance show that the ENEAS-SR mission to
1996FG3 can be achieved even with a low characteristic acceleration of 0.10 mm/s2 in exactly
10 years, including a rendezvous trajectory of 6.7 years (2450 days, figure 7.6.1), 117.5 days of
operations at the asteroid, and an Earth return trajectory of 3.0 years (1085 days, figure 7.6.2).
The Earth return leg is much shorter than the outward leg, since no rendezvous is required
at Earth.
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7.6.1: Outward trajectory 7.6.2: Return trajectory

Figure 7.6 ENEAS-SR trajectory option

Answer to Q3: Looking at equation (2.21), the characteristic acceleration of solar sailcraft
with a square sail is

ac =
Peff,0

σSA + mPL
s2

(7.1)

One can see that the performance depends on three design parameters, the sail assembly
loading σSA, the payload mass mPL, and the side length s (or area s2) of the solar sail, defin-
ing a three-dimensional solar sail design space. Diagrams 7.7.1 and 7.7.2 show parametric
sections of this design space for a fixed σSA = 29.2 g/m2 and a fixed s = 50 m respectively
(as for the ENEAS sailcraft). Diagram 7.7.2 shows that for σSA = 29.2 g/m2 a characteris-
tic acceleration of up to 0.284 mm/s2 can be achieved without any payload. For a smaller
characteristic acceleration, a positive payload mass can be accommodated, depending on the
sail size. To achieve a characteristic acceleration beyond 0.284 mm/s2, the sail size has to
be enlarged and/or the sail assembly loading has to be reduced. Diagram 7.7.3 shows the
required sail size for different sail assembly loadings and payload masses, to obtain a char-
acteristic acceleration of 0.10 mm/s2. Based on the experiences with the ground-based solar
sail technology demonstration, a maximum sail size of (70 m)2 with a sail assembly mass of
111 kg (σSA = 22.7 g/m2, sail film + booms + deployment module) is considered as a realistic
– however still challenging – baseline for the ENEAS-SR mission [84].

Answer to Q4: The specified σSA and s yield a payload mass of 295 kg to get a characteristic
acceleration of 0.10 mm/s2. The realization of such a mission within the specified mass budget,
including a lander of about 150 kg and a sample return capsule of about 50 kg, appears to be
feasible. Table 7.4 summarizes the ENEAS-SR parameters.
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7.7.1: The characteristic acceleration ac as a func-
tion of s and mPL for σSA = 29.2 g/m2

7.7.2: The characteristic acceleration ac as a func-
tion of σSA and mPL for s = 50m

7.7.3: The side length s of the solar sail that is
required to achieve a characteristic acceler-
ation of 0.10mm/s2 as a function of σSA and
mPL

Figure 7.7

Sail area A (70 m)2

Sail assembly mass mSA 111 kg
Sail assembly loading σSA 22.7 g/m2

Payload mass (incl. spacecraft bus) mPL 295 kg
Total sailcraft mass m 406 kg
Sailcraft loading σ 82.9 g/m2

Characteristic acceleration ac 0.100 mm/s2

Characteristic SRP force Fc 40.6 mN

Table 7.4 Parameters for the ENEAS-SR solar sailcraft
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The ENEAS-SR transfer trajectory to 1996FG3 is analogue to the ENEAS trajectory, as
described in section 7.2.2.1. At the end of the transfer trajectory, the solar sailcraft will
make a rendezvous with 1996FG3 within its gravitational sphere of influence (Hill-sphere) of
between 70 km radius (at perihelion) and 150 km radius (at aphelion). Even in the near-field
of the asteroid, the SRP acceleration of between 0.05 mm/s2 (at the aphelion of 1996FG3)
and 0.21 mm/s2 (at perihelion) is larger than the asteroid’s gravitational acceleration (0.01
to 0.00005 mm/s2 in a distance ranging from 5 to 50 km), so that the sailcraft is able to hover
on an artificial equilibrium surface in the hemisphere that is opposite to the sun (figure 7.8).

Figure 7.8 Hovering at the asteroid

Those quasi-stationary hovering positions are unstable but can be stabilized using a feedback
control loop [66]. Hovering near the asteroid, the (likely complex) gravitational field of the
target body is studied, so that a coarse gravitational field model can be determined. There-
after, the lander with an integrated Earth return capsule is separated from the solar sail to
go into closer orbit about the asteroid. While measuring the asteroid’s gravitational field
with increasing accuracy, the orbit of the lander is continuously lowered until a safe landing
trajectory can be computed (some or all of those extensive computations may be performed
on Earth). Once landed, the sample is fed directly into the Earth return capsule and brought
back by the lander to the hovering sailcraft. In this mission phase, the sailcraft is waiting
edge-on (so that no SRP force is acting on the sail) at the L2 Lagrange point for the lander
to assist the rendezvous. The lander design, the sample extraction mechanisms and the sub-
systems that are required to rendezvous the waiting sailcraft require further studies and are
beyond the scope of this analysis. Since 1996FG3 is a binary system, it would be interesting to
land and extract samples from both bodies, to investigate the origin and the collisional evolu-
tion of the 1996FG3 system. Since the gravitational acceleration is very low near the asteroid
and the required ∆V for the lander less than 10m/s, a cold gas system with a propellant mass
of less than 4 kg will suffice to perform all operations. After rendezvous with the hovering
sailcraft, the re-docked ENEAS-SR solar sailcraft returns the sample to Earth. Finally, some
hours before the arrival of ENEAS-SR at Earth, the return capsule is separated from the
lander, spun-up to maintain the required entry attitude, and injected into an Earth reentry
trajectory, where it is decelerated by atmospheric friction and breaking parachutes. The re-
turn trajectory is much faster than the transfer trajectory to 1996FG3 since no rendezvous
is required at Earth. Thus, the sailcraft may arrive with a relatively large hyperbolic excess
velocity of about 5.5 km/s. The gravitational acceleration of Earth adds another 11.2 km/s,
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so that the Earth entry velocity may reach about
√

5.52 + 11.22 km/s = 12.5 km/s. This is
slightly less than the entry velocity of NASA’s Stardust capsule, which has the highest entry
velocity (12.9 km/s) of any Earth-returning mission up to date [32, 33].

7.2.3.2 Mission Analysis for SEP Spacecraft

To assess the capability of solar sail propulsion for this NEA sample return mission, the
relevant mission and system parameters are again compared with two SEP systems, using a
single NSTAR thruster (called ENEASEP1-SR, see table 7.5), and using a cluster of three
NSTAR thrusters (called ENEASEP3-SR, see table 7.6) respectively, that accomplish the
same mission objective. Again, InTrance has been applied for the optimization of the SEP
trajectories.

Payload mass (incl. spacecraft bus) mPL 295.0 kg
Ion propulsion system mass mThr 48.0 kg
Solar array mass 2 ·mSAW 55.4 kg
Dry mass (without propellant and tank) mdry 398.4 kg
Maximum thrust Fmax 71.3 mN
Total launch mass with 180 kg propellant mass and tank m0 596.4 kg
Maximum acceleration with full tank a0 0.120 mm/s2

Maximum acceleration with (near-)empty tank af 0.171 mm/s2

Table 7.5 Parameters for the ENEASEP1-SR spacecraft with a single NSTAR thruster

Payload mass (incl. spacecraft bus) mPL 295.0 kg
Ion propulsion system mass 3 ·mThr 144.0 kg
Solar array mass 4 ·mSAW 110.8 kg
Dry mass (without propellant and tank) mdry 549.8 kg
Maximum thrust Fmax 213.9 mN
Total launch mass with 215 kg propellant mass and tank m0 788.5 kg
Maximum acceleration with full tank a0 0.270 mm/s2

Maximum acceleration with (near-)empty tank af 0.389 mm/s2

Table 7.6 Parameters for the ENEASEP3-SR spacecraft with a cluster of three NSTAR thrusters

The InTrance-results for ENEASEP1-SR (figure 7.9) show that with a single NSTAR thruster
the same payload could be delivered to 1996FG3 within 690 days (if C3 = 0km2/s2). However,
the launch mass of ENEASEP1-SR is 47% larger than for the solar sail option, requiring a
heavier and thus more expensive launch vehicle. The time of operations at the asteroid is in
this case approx. 118 days and the Earth return leg takes 465 days, so that the total mission
duration is 3.48 years (1237 days), which is approximately a third of the mission duration
for ENEAS-SR. Approx. 180 kg of Xenon are required as propellant. The hyperbolic excess
velocity at arrival is about 5.5 km/s, which is the same value as for ENEAS-SR, so that the
Earth reentry velocity may reach also about 12.5 km/s.

Using ENEASEP3-SR, the total mission duration can be even further reduced to 1.91 years
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Figure 7.9 ENEASEP1-SR outward and return trajectory

Figure 7.10 ENEASEP3-SR outward and return trajectory

(697 days) for a different optimal launch date, as the InTrance-results in figure 7.10 show
(C3 = 0 km2/s2). The faster transfer requires not only a larger thrust but also approx. 20%
more propellant (215 kg Xenon). In this case, the launch mass of ENEASEP3-SR is 32%
larger than for ENEASEP1-SR and 94% larger than for the solar sail option. However, the
hyperbolic excess velocity at arrival is larger (5.9 km/s, leading to a slightly larger reentry
velocity of about 12.7 km/s) and the time for operations at the asteroid is only 62 days, which
might be too short to accomplish the mission objectives. For a longer stay time of up to one
year, no reasonable return trajectories have been found due to the unfavorable constellation
of Earth and 1996FG3. However, there are return options for stay times longer than one year.
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7.2.3.3 Comparison of the Solar Sail Option and the SEP Option

The results demonstrate that also for this mission, solar sailcraft is clearly outperformed
by the SEP option, if only the transfer time is considered. This is despite the fact that
the required velocity increment for the mission is approx. 50% larger (∆V = 11.0 km/s
for ENEASEP1-SR and ∆V = 9.4 km/s for ENEASEP3-SR) than for the ENEASEP mis-
sion. However, the required thruster operation time (24 500 hours for ENEASEP1-SR and
13 300 hours for ENEASEP3-SR) exceeds by far the currently demonstrated NSTAR thruster
lifetime of 8 192 hours on DS1 [17]. Consequently, a higher thruster lifetime must be achieved
to perform such a mission. Of course, lifetime and aging is also an issue for solar sails, for
which adequate tests have also to be performed. Using a solar sail for propulsion, ENEAS-SR
could be launched on a smaller and thus less expensive launcher than ENEASEP1-SR and
ENEASEP3-SR. If ground operation costs can be kept low, and if the transfer time plays a
subordinate role with respect to cost, the solar sail might the best option for such a mission.

7.2.4 Multiple Near-Earth Asteroid Rendezvous and Sample Return Mis-
sion

Within the last section, a (70 m)2 solar sail with a mass of 111 kg was presumed for the
ENEAS-SR mission, to accomplish a characteristic acceleration of 0.1 mm/s2 for a 295 kg pay-
load. Within this section, it is investigated, whether – using the same solar sail – a multiple
NEA rendezvous mission can be performed with the small ENEAS payload of 75 kg. Con-
sistently, this multiple NEA rendezvous mission is termed ENEAS+. Table 7.7 summarizes
the ENEAS+ parameters, together with the parameters for a mission termed ENEAS+SR,
which will be described later.

ENEAS+ ENEAS+SR
Sail area A (70 m)2 (139 m)2

Sail assembly mass mSA 111 kg 437 kg
Sail assembly loading σSA 22.7 g/m2 22.7 g/m2

Payload mass (incl. spacecraft bus) mPL 75 kg 295 kg
Total sailcraft mass m 186 kg 732 kg
Sailcraft loading σ 38.0 g/m2 38.0 g/m2

Characteristic acceleration ac 0.218 mm/s2 0.218 mm/s2

Characteristic SRP force Fc 40.6 mN 160mN

Table 7.7 Parameters for the ENEAS+ and the ENEAS+SR solar sailcraft

For the given solar sail and the given payload, the characteristic acceleration of the ENEAS+
solar sailcraft is 0.218 mm/s2. To compare solar sail propulsion with the SEP option, the
target objects of the Hera-mission have been adopted (see section 6.5). InTrance has been
used to calculate the transfer times between the targets for various launch dates to find the
optimal mission sequence. The best found mission sequence is illustrated in figure 7.11 and
in table 7.8. The trajectory from 1999AO10 to Earth has been included, although it is not
part of the actual ENEAS+ mission. However, the trajectories are valid for any solar sailcraft
that accomplishes a characteristic acceleration of 0.218 mm/s2. Using a larger solar sail (see
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right column of table 7.7), this mission might be also performed with the ENEAS-SR payload.
With such a solar sailcraft, all three visited NEAs could be sampled, and the samples could
be returned to Earth (this mission might be termed ENEAS+SR).

Figure 7.11 ENEAS+/ENEAS+SR trajectory options

Transfer time Arrival date Body Stay time Launch date
Earth 28 Apr 06

595 days 14 Dec 07 2000AG6 203.5 days 05 Jul 08
465 days 13Oct 09 1989UQ 270.0 days 10 Jul 10

1255 days 16 Dec 13 1999AO10 161.4 days 26 May 14
750 days 14 Jun 16 Earth

Table 7.8 ENEAS+/ENEAS+SR mission data
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As table 7.8 shows, the total mission durations of ENEAS+ and ENEAS+SR (7.63 years
and 10.13 years respectively) are considerably longer (59% and 110% respectively) than for
the Hera-mission. Regarding the question, whether solar sail or solar electric propulsion is
superior for such a mission, the same conclusions as in the previous sections 7.2.2.3 and 7.2.3.3
can be drawn.

7.3 Mercury Rendezvous Mission

Within this section, two solar sailcraft rendezvous missions to Mercury are assessed, one being
comparable to the American MESSENGER mission and the other one to ESA’s cornerstone
mission BepiColombo (same scientific payload, same transfer time), the former with a chemical
propulsion system and the latter with a SEP system.

7.3.1 Mission Objectives

Although Mercury holds answers to many important questions regarding the formation and
evolution of the solar system, it is – due to its difficult accessibility (∆V ≥ 13.12 km/s [73]) –
the least characterized and understood terrestrial planet. Up to now, information about Mer-
cury is limited to Earth-based observations and the data set gained by Mariner 10 during its
three subsequent fly-bys (1974-75), imaging (only3) 46% of Mercury’s surface and discovering
its magnetic field. Important questions about Mercury include the origin of its anomalously
high metal to silicate ratio and its implications for planetary accretion processes, its geologi-
cal evolution, the mechanisms of the magnetic field generation, the processes that control the
volatile species that are eventually present in polar deposits, and the nature of its exosphere
and magnetosphere [87]. Radio science experiments could provide a detailed mapping of Mer-
cury’s gravity field (including its temporal tidal variations) and information about its internal
structure [46, 62]. Another import scientific objective at Mercury could be the detection of
asteroids with aphelia inside the Earth’s orbit (called Inner Earth Objects, IEOs) that would
be very difficult to detect from Earth-based or near-Earth-based telescopes4.

7.3.2 Propulsion Options

Two dedicated missions are scheduled to rendezvous Mercury within the next ten years: MES-
SENGER (USA) and BepiColombo (Europe/Japan). Both missions address the key questions
that have been identified since Mariner 10 [41]. MESSENGER is a relatively lightweight Mer-
cury orbiter that employs chemical propulsion and a Venus-Venus-Mercury-Mercury gravity
assist trajectory to reach the planet within more than five years, whereas BepiColombo is
a relatively heavyweight spacecraft5 that employs SEP and also multiple gravity assists at
Venus and Mercury to reach Mercury within less than three years.6 Table 7.9 gives the most
important mission parameters for MESSENGER and BepiColombo [8, 50, 79]. A comparison
3 since the fly-bys were in 3:2 resonance
4 in fact, no IEO has been detected so far [41]
5 consisting of three distinct sub-spacecrafts: the Mercury Planetary Orbiter (MPO), the Mercury Magne-

tospheric Orbiter (MMO), and the Mercury Surface Element (MSE)
6 Single launch option for Jan 09 with Ariane-5. However, this is only one launch option among many;

however, the present baseline is a double launch of the sub-spacecrafts on two Soyuz-Fregat launchers.
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MESSENGER BepiColombo
(single launch option with Ariane-5)

Scientific payload 380 kg 757 kg
Launch Mar 04 Jan 09
Launch mass 1093 kg 2495 kg
Launcher Delta 2925H-9.5 Ariane-5
C3 15.2 km2/s2 7.8 km2/s2

Gravity assists (2×)Venus-(2×)Mercury (2×)Venus-(2×)Mercury
Transfer Time 5.07 years 2.64 years
Mercury orbit insertion Apr 09 Aug 11

Table 7.9 Comparison of the significant (tentative) mission parameters for MESSENGER and
BepiColombo

of the values that are given in table 7.9 shows clearly the advantage of SEP over chemical
propulsion.

Hughes [45] investigated the use of solar sail propulsion for a BepiColombo-like mission,
using the simplified SRP force model (η = 0.9). According to his results, Mercury can be
reached within 2.4 years, if the solar sail has a characteristic acceleration of ac = 0.3 mm/s2.
For an assumed payload (MPO+MMO+MSE) of 553 kg (which is in contrast to the 757 kg
that is given in [8]), he derived a required sail size of (178m)2, assuming a sail assembly
loading of σSA = 10 g/m2. The mass of the solar sailcraft is in this case 872 kg, which is
significantly less than the launch mass for the SEP option7, and – at the same time – the
hyperbolic excess energy requirement is lowered to C3 = 0km2/s2.

7.3.3 Mission Analysis for Solar Sailcraft

Scientific payload 380 kg 757 kg
Launch May 04 Mar 08
characteristic acceleration 0.18 mm/s2 0.35 mm/s2

C3 15.2 km2/s2 7.8 km2/s2

Gravity assists – –
Transfer Time 5.45 years 2.64 years
Mercury orbit insertion Oct 09 Nov 10

Table 7.10 Comparison of the significant mission parameters for a MESSENGER- and a
BepiColombo-like Mercury mission using a solar sail

Within this section, InTrance is used to derive the performance requirements for solar sails
that would be able to transport the payload of MESSENGER and BepiColombo respectively
to Mercury. In contrast to [45], the more realistic standard SRP force model is employed and
the relevant mission parameters are taken from [8] and [79] (table 7.10). For a fair comparison,
the respective C3-values according to table 7.9 are used also for the solar sail option.

7 in [45], a launch mass of 2272 kg is assumed for the SEP option
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7.12.1: Trajectory 7.12.2: Performance requirements

Figure 7.12 MESSENGER-like mission to Mercury using a solar sail

sail assembly loading sail size sail assembly mass launch mass
σSA

[
g/m2

]
s [m] mSA [kg] m [kg]

10 102.7 105 485
20 120.8 292 672
30 153.9 711 1091

Table 7.11 Required sail size s for various sail assembly loadings σSA to achieve a characteristic
acceleration of ac = 0.18 mm/s2

As figure 7.12.1 shows, a solar sail with a characteristic acceleration of 0.18 mm/s2 is able
to reach Mercury within approximately the baselined MESSENGER transfer time, if it is
injected with the same hyperbolic excess energy of 15.2 km2/s2. In contrast to the chemical
baseline mission scenario, no gravity assist maneuver is necessary to achieve the required
∆V , which results in a more flexible mission profile. Figure 7.12.2 gives the sail size that is
required to achieve ac = 0.18 mm/s2 for different sail assembly loadings and payload masses.
The bold line denotes the σSA-s-relation for the MESSENGER payload mass of 380 kg. It
can be seen that the required sail size increases drastically for σSA & 30 g/m2, and that for
σSA ≈ 46 g/m2 the required sail size approaches infinity. Table 7.11 gives values for three
points on the MESSENGER-payload-curve. It can be seen that the sail assembly loading
must be below 30 g/m2 to yield a benefit in launch mass with respect to the MESSENGER
baseline mission scenario. For an advanced solar sail with a low sail assembly loading of
approx. 10 g/m2 the launch mass is less than half of the actual MESSENGER launch mass.
Such a solar sail could considerably reduce the launcher requirements and thus the launch
costs for such a MESSENGER-like mission.

To reach Mercury with a solar sail within the BepiColombo reference transfer time (fig-
ure 7.13.1), a characteristic acceleration of 0.35 mm/s2 is necessary, if the solar sailcraft is
injected with the same hyperbolic excess energy of 7.8 km2/s2. In contrast to the SEP mission
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7.13.1: Trajectory 7.13.2: Performance requirements

Figure 7.13 BepiColombo-like mission to Mercury using a solar sail

sail assembly loading sail size sail assembly mass launch mass
σSA

[
g/m2

]
s [m] mSA [kg] m [kg]

10 235.2 553 1310
15 295.3 1308 2065

Table 7.12 Required sail size s for various sail assembly loadings σSA to achieve a characteristic
acceleration of ac = 0.35 mm/s2

Figure 7.14 ”Launch window” for a BepiColombo-like mission to Mercury using a solar sail

scenario, no gravity assist maneuver is necessary to achieve the required ∆V . This leads to a
practically ever-existent launch window (see figure 7.14), allowing a very flexible mission pro-
file. For the BepiColombo reference scenario, a one-month launch window opens up only every
1.6 years [8]. Figure 7.13.2 gives the sail size that is required to achieve ac = 0.35 mm/s2 for
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different sail assembly loadings and payload masses. The bold line denotes the σSA-s-relation
for the BepiColombo payload mass of 757 kg. It can be seen that in this case the required
sail size increases drastically for σSA & 15 g/m2, approaching infinity for σSA ≈ 24 g/m2.
Table 7.12 gives values for two points on the BepiColombo-payload-curve. To yield a consid-
erable benefit in launch mass with respect to the BepiColombo baseline mission scenario, the
sail assembly loading must be below approx. 15 g/m2. For an advanced solar sail with a low
sail assembly loading of approx. 10 g/m2 the launch mass is nearly half of actual BepiColombo
launch mass. Again, such a solar sail could considerably reduce the launcher requirements
and thus launch costs for such a BepiColombo-like mission. However, the required sail di-
mensions are impressive and far from existent or near-term technology. However, they would
be lower, if additional gravity assist maneuvers were performed, which can not be calculated
within the current one-body simulation model of InTrance. This is why the optimization of
low-thrust trajectories that include gravity assist maneuvers is a desirable feature for future
InTrance versions.

7.4 Piloted Mars Mission

To provide a final innovational example of how InTrance can be applied to support space
mission analysis, it is used to analyze the feasibility of a piloted Mars mission for spacecraft
using a nuclear electric propulsion system.

7.4.1 Mission Objectives and Propulsion Options

Beyond the ISS and the Moon, Mars is the logical next step towards the manned exploration
and conquest of space. Differing from ”ordinary” robotic missions due to large payloads
and restricted flight times, the feasibility of piloted Mars missions depends crucially on an
adequate propulsion system. To reduce the risk for the crew, a short mission duration (of
less than approximately two years) and a short stay time (of less than approximately three
months) is desirable (fast mission). Such a requirement precludes the application of chemical
propulsion systems, which necessitate in this case an immense effort (several thousand tons
in LEO for an Earth return payload of about 75 t), since at least one trajectory leg requires
a large ∆V . Due to their larger specific impulse, low-thrust propulsion systems are expected
to enable relatively short missions with reasonable effort. Within this section, InTrance is
employed to analyze mission opportunities for an exemplary spacecraft with a NEP system
(300 N maximum thrust, 6000 s specific impulse, 160 t launch mass at Earth, 75 t Earth return
payload), providing an illustrative example of how InTrance is recently used at DLR to
analyze the capability of various low-thrust propulsion systems to enable fast piloted Mars
missions [81, 82].

7.4.2 Mission Analysis for NEP Spacecraft

Using InTrance, time-optimal trajectories have been found to have three different topologies
(A, B, and C, figure 7.15), depending on the constellation of Earth and Mars at the respective
departure, on the closest tolerable solar distance (rmin), and on the maximum relative velocity
at the target body (∆vf,max). Within this categorization, trajectories of type A neither cross



7.4 Piloted Mars Mission 107

the orbit of Earth nor that of Mars. They have short transfer times and require a moderate
to high ∆V . However, Type A trajectories are only possible for favorable constellations of the
two planets (type A phase). Trajectories of type B cross the orbit of Earth, moving thereby
closer to the sun. They have longer transfer times and require a high to very high ∆V .
Trajectories of type C move farther away from the sun than Mars, having moderate to very
long transfer times and a moderate to high ∆V -requirement. Type B and C phases are defined
accordingly as the time intervals, in which type B and C trajectories are time-optimal due to
the constellation of Earth and Mars at departure. The phases alternate (A→C→B→A→. . .
for the Earth-Mars transfer and A→B→C→A→. . . for the Mars-Earth transfer) as similar
constellations recur.

Figure 7.15 Trajectory types (A, B, and C, see text) for Earth-Mars and Mars-Earth transfers

Figure 7.16 shows for an Earth return trajectory, how the transfer time varies within one
A→B→C-cycle. The left part of the downward slope is associated with type C trajectories,
the right part of the downward slope is associated with type A trajectories, and the upward
slope is associated with type B trajectories. Thus, type C trajectories evolve gradually into
type A trajectories, whereas there is a tremendous increase in flight time, when type B
trajectories become non-optimal and type C trajectories provide the time-optimal option to
return to Earth. As it can be seen, type B trajectories (with reasonable transfer times) can
also be flown later in time, if a closer solar approach is tolerated. In this case, a trade-off
has to be made concerning the medical risk for the crew (long transfer-time vs. close solar
fly-by). A similar diagram can be drawn for the Earth-Mars leg of the mission. However,
what is more meaningful, is to plot the transfer time for this leg against the arrival date at
Mars, together with a plot of the Earth return transfer time against the departure date at
Mars, as it done in figure 7.17.1 for rmin = 0.7 AU. Looking at the displacement of both
curves, one can see that for a short stay at Mars, the combination of a short Earth-Mars
leg with a short Mars-Earth leg (a type A-A trajectory pair) is not possible with the given
propulsion system. On the basis of this diagram, different options for a piloted mission can
be discussed. The horizontal bar of the ”H” gives the stay time and the two vertical bars give
the combined transfer time, so that the size of the ”H” defines the total mission duration.
For each stay time-value a minimal flight time exists, which can be plotted against the stay
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Figure 7.16 Transfer time for Earth return in dependence of the departure date at Mars and the
minimum tolerable solar distance rmin

7.17.1: Transfer times against arrival/departure
date at Mars

7.17.2: Mission duration against stay time at
Mars

Figure 7.17

time, as it is done in figure 7.17.2. As this diagram shows – using the given spacecraft and
propulsion system parameters – a stay time of three month can be realized within a total
mission duration of 561 days (1.54 years). For a total mission duration of 2 years, the stay
time at Mars can be extended to about 140 days (4.7 months). The diagram shows also that
– using the given propulsion system – type A-A transfers with short total flight durations are
only possible for long stay times at Mars of about 600 days.
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Low-thrust propulsion systems provide a small thrust force over an extended period of time to
modify the orbit of spacecraft and to generate the required velocity increment. Unlike for high-
thrust propulsion systems – like chemical rockets – the trajectory can not be approximated
by ballistic flight arcs combined with singular thrusting events that change the spacecraft’s
velocity instantaneously while its position remains fixed. Low-thrust trajectory optimization
is equivalent to the search for the optimal thrust vector variation along the entire trajectory
from a given initial state A to a desired final state B. The optimality of the trajectory
can be defined with respect to several (possibly competing) objectives, e.g. transfer time and
propellant consumption. Traditionally, low-thrust trajectory optimization problems are solved
using various numerical optimal control methods that are based on the calculus of variations.
All these methods can be generally classified as local trajectory optimization methods. Their
convergence behavior depends on an adequate initial guess of the solution, which is often hard
to find, so that the search for a good trajectory can become very time-consuming. Even if
convergence is achieved, a local optimum is typically found, which is close to the initial guess
that is rarely close to the global optimum.

Within this work, low-thrust trajectory optimization problems have been attacked from a
different perspective: the perspective of artificial intelligence and machine learning. Inspired
by natural archetypes, a smart global method for spacecraft trajectory optimization was
developed that fuses artificial neural networks and evolutionary algorithms to evolutionary
neurocontrollers (this method was termed InTrance, which stands for ”Intelligent Trajectory
optimization using neurocontroller evolution”). From the perspective of machine learning,
a trajectory is regarded as the result of an explicitly not time-dependent steering strategy
that manipulates the spacecraft’s thrust vector according to the actually perceived state of
the environment. A standard feedforward artificial neural network is used as a so-called
neurocontroller to implement such a spacecraft steering strategy. This way, the trajectory
is defined by the internal parameters of the neurocontroller. An evolutionary algorithm is
used for finding the optimal network parameters. The trajectory optimization problem is
solved, if the optimal parameter vector is found, which defines the optimal spacecraft steering
strategy, which in turn generates the optimal trajectory. Using an evolutionary algorithm for
the optimization of the neurocontroller, this algorithm may be additionally used for finding
good initial conditions.

InTrance has been applied to a variety of interplanetary low-thrust trajectory optimization
problems, for which reference trajectories have been found in the literature. In accordance
with those reference problems, a one-body simulation model without disturbing forces was
used. The re-calculation of those problems has revealed that many of the trajectories, which
have been generated using traditional local trajectory optimization methods, are quite far
from the global optimum. Using InTrance, improvements in transfer time of up to 74%
have been achieved. For mission feasibility analysis, the obtained InTrance-trajectories are
usually sufficiently accurate with respect to the terminal constraint. However, especially for
very difficult problems, demanding accuracy requirements, and indirect steering strategies,
InTrance does not in all instances converge against the near-globally optimal solution, or does
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not achieve the required accuracy, so that more than one InTrance-run1 should be performed
to assess the quality of the generated solution(s) and to raise the likelihood for obtaining a
near-globally optimal solution.2 If a more accurate solution than the InTrance-generated one
is required, the InTrance-solution might be used as an initial guess for some numerical optimal
control method. The obtained results indicate that – using an evolutionary neurocontroller
for spacecraft steering – InTrance is a suitable method for finding near-globally optimal low-
thrust trajectories. Since evolutionary neurocontrollers explore the trajectory search space
more exhaustively than a human expert can do by using traditional optimal control methods,
they are able to find spacecraft steering strategies that generate better trajectories, which
are closer to the global optimum. Unlike the traditional methods, InTrance runs without
an initial guess and without the permanent attendance of an expert in astrodynamics and
optimal control theory.

The influence of various InTrance-parameters – like neurocontroller type, population size, and
accuracy requirements – on the convergence behavior of the algorithm and on the quality of
the obtained solutions has been investigated. Both, quality and convergence behavior have
been found to depend considerably only on the chosen neurocontroller input and output set,
and on an adequate choice of the fitness function. Thereby, direct steering strategies have
been found to perform better than indirect steering strategies. Concerning the other var-
ied parameters, the convergence behavior of InTrance has found to be quite robust. Many
InTrance-parameters have not been varied, since reasonably robust settings had been found
during the development of InTrance, and since the primary objective of this work was not to
find the optimal neurocontroller and evolutionary algorithm parameters for each particular
problem, but to demonstrate that evolutionary neurocontrol can be successfully applied to
the near-globally optimal steering of low-thrust spacecraft. The optimization of the neurocon-
troller and the evolutionary algorithm as well as investigations about the problem-dependency
of the parameters remain a wide field of research. The InTrance-generated steering strategies
have been found to be quite insensitive to neurocontroller input noise, as it is expected for a
real mission due to errors in the spacecraft’s autonomous sensors and/or errors in the measure-
ment of the spacecraft’s position and velocity from Earth. However, the InTrance-generated
steering strategies have been found to be sensitive to disturbing accelerations acting on the
spacecraft, so that a thorough mission design should employ a more sophisticated simulation
and spacecraft model than the one that has been used within this work.

Many promising directions concerning the application of evolutionary neurocontrol for space-
craft trajectory optimization are proposed for future research:

• Evolutionary neurocontrol might be applied to a wide variety of trajectory optimization
problems, including different propulsion systems and planetocentric problems. To solve
combined low-thrust planetary escape → interplanetary transfer → planetary capture
problems, three neurocontrollers might be encoded on a single chromosome, so that
they can be co-evolved by the evolutionary algorithm. To find still faster transfer
trajectories, the inclusion of gravity-assist maneuvers would also be desirable. The
number of intermediate fly-bys – e.g. at near-Earth objects – along a trajectory would be
another interesting objective for optimization, if longer transfer times can be tolerated.
Evolutionary neurocontrol may also be successfully applied to autonomous multiple

1 using different randomly generated initial populations
2 This could of course be implemented into the software, however at the cost of runtime performance.
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rendezvous trajectory optimization (e.g. rendezvous three arbitrary near-Earth objects
from a set of some hundred objects in minimal time, or low-thrust Earth-Mars-cycler
trajectories, etc.)

• The found neurocontroller steering strategies are not universal steering strategies, but
achieve acceptable results only for a launch within a small interval around the launch
date, for which they are optimized. For a given spacecraft, a universal steering strat-
egy would achieve the required accuracy for an entire class of transfer problems (e.g.
rendezvous with any arbitrary solar system body for all launch dates). Such universal
steering strategies have not been found.3 It remains questionable, whether universal
steering strategies exist and whether they can be represented using a feedforward arti-
ficial neural network. Universal steering strategies would be very interesting, since they
would suggest that low-thrust trajectory optimization problems might have a (not ana-
lytically obtainable and yet unknown) closed-form solution. It may also be beneficial to
utilize more general artificial neural networks, where the neural transfer function and
the network topology are also optimized by the evolutionary algorithm. (Truncated)
Fourier series provide another option to represent the variation of control variables.
They might be used instead of artificial neural networks to represent a (non-universal)
steering law. In this case, the evolutionary algorithm could be used to determine the
optimal coefficients of the series. For a universal steering law, the coefficients can not
be fixed but are expected to be a function of the problem parameters.

• To perform more thorough mission analyses, the implementation of a more sophisticated
simulation model, that includes the gravitational influence of all major solar system
bodies is desirable. Additionally, more realistic spacecraft models must be used in
this case. Especially for solar sailcraft, the translational motion is highly interrelated
with the rotational motion, so that a model for all six degrees of freedom should be
developed. Also the billowing, wrinkling and aging of the sail must be studied through
FEM simulations and in-space tests.

The secondary objective of this work was to assess the performance of solar sail propul-
sion with respect to chemical and solar electric propulsion (SEP) for interplanetary missions.
This has been done exemplary for missions to near-Earth asteroids and to Mercury. For
the near-Earth asteroid missions, a near-term sail engineering technology was assumed. The
obtained InTrance-results indicate that for this kind of missions (moderate velocity incre-
ments, relatively far from the sun), near-term solar sailcraft is clearly outperformed by the
SEP option, if only transfer time is considered. However, the launch mass for the solar sail
option is considerably smaller in all cases, thus allowing smaller and cheaper launch vehicles.
If ground operation costs can be kept low and if the transfer time plays a subordinate role
with respect to cost, the solar sail might be the favorable option for such near-Earth asteroid
rendezvous and sample return missions. In any case, the development of near-term sails is an
indispensable first stepping stone on the way to more advanced solar sails. For the Mercury
rendezvous, it has been found that medium-term solar sails are able to deliver the same pay-
load to Mercury than chemical propulsion systems and SEP systems within the same transfer
time, allowing at the same time smaller launch vehicles and direct trajectories with simpler

3 However, they have not been deliberately searched; this would require that a single neurocontroller is
trained to perform well for a diverse set of problems (different launch dates, different target bodies, etc.).
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mission profiles and practically ever-existent launch windows. Another important result, that
has been obtained using InTrance, is the fact, that for a thorough mission analysis the non-
perfect reflectivity of the solar sail must be considered through an appropriate solar radiation
pressure force model. The widely used simplification, that the non-perfect reflectivity of the
sail can be taken into account by using an overall efficiency factor, should only be made for
very preliminary mission feasibility analyses. Finally, to provide another innovative example
of how InTrance can be applied to support space mission analysis for low-thrust propulsion
systems, it has been used to analyze the feasibility of a piloted Mars mission for spacecraft
using a nuclear electric propulsion system.

In conclusion, it is astonishing that small and primitive artificial neural networks, bred by
a crudely simulated biological process, are able to perform tasks that – after some million
years of intellectual and cultural evolution and some thousand years of scientific evolution –
we are not able to solve with our bare mind. Luckily, although we do not understand their
solution method, we are able to replicate their solutions. The citation by Emerson Pugh
at the beginning of this work states that we might probably never be able to understand the
human brain, since it is as complex as we are. The results that have been obtained within
this work support this statement, although we might probably be more simple than Pugh
had ever imagined.
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A Reference Frames

This appendix outlines the three heliocentric reference frames that are used throughout this
work for describing the interplanetary translational motion of spacecraft. These reference
frames are

• an inertial cartesian reference frame J (section A.1),

• an ecliptic spherical reference frame E (section A.2) and

• an orbit polar reference frame O (section A.3)

The origin of all reference frames is the position of the sun’s point mass.1 Apart from those
reference frames, a body’s orbital motion in space is commonly described by a set of six
so-called orbital elements (section A.4).

A.1 Inertial Cartesian Reference Frame

The reference frame J : (ex, ey, ez) is an inertial right-handed cartesian coordinate frame,
which is defined with respect to the mean ecliptic and equinox of J2000 at the J2000 epoch [70].
The spacecraft’s position, velocity, and acceleration in J -frame components are

r = xex + yey + zez =

x
y
z

 (A.1)

ṙ = ẋex + ẏey + żez =

ẋ
ẏ
ż

 (A.2)

r̈ = ẍex + ÿey + z̈ez =

ẍ
ÿ
z̈

 (A.3)

A.2 Ecliptic Reference Frame

Due to the nature of the problem, the translational motion of spacecraft is better described
in an ecliptic spherical reference frame E . The reference frame E : (er, eϕ, eθ) is an orthogonal
right-handed spherical coordinate frame, which is defined according to figure A.1. er points
always along the sun-spacecraft line, eθ lies in the er-ez-plane and points along the direction
of increasing θ, and eϕ completes the right-handed coordinate system (er × eϕ = eθ). The
azimuth angle ϕ is the angle between ex and the projection of r into the ecliptic (ex-ey-
plane). The elevation angle θ is the angle between the ecliptic and r. Expressed in J -frame

1 which is assumed to be in rest, since the sun’s motion through the interstellar medium and the gravitational
forces by bodies other than the sun are neglected
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Figure A.1 Ecliptic reference frame

components, the unit vectors are

er =

cos ϕ cos θ
sinϕ cos θ

sin θ


eϕ =

− sinϕ
cos ϕ

0


eθ =

− cos ϕ sin θ
− sinϕ sin θ

cos θ


(A.4)

The spacecraft’s position, velocity, and acceleration in E-frame components are

r = rer (A.5)

ṙ = ṙer + rϕ̇ cos θeϕ + rθ̇eθ (A.6)

r̈ = (r̈ − rθ̇2 − rϕ̇2 cos2 θ)er+

+ (2ṙϕ̇ cos θ + rϕ̈ cos θ − 2rϕ̇θ̇ sin θ)eϕ+

+ (2ṙθ̇ + rθ̈ + rϕ̇2 sin θ cos θ)eθ

(A.7)
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A.3 Orbit Reference Frame

It is very convenient to describe the translational motion of spacecraft in E-frame coordinates,
but the thrust vector of spacecraft is better described in a reference frame that has two
unit vectors within the (osculating) orbital plane. For that purpose, the reference frame
O : (er, et, eh), an orthogonal right-handed polar coordinate frame, is defined according to
figure A.2. er points always along the sun-spacecraft line, eh is the orbit plane normal
(pointing along the spacecraft’s orbital angular momentum vector), and et completes the
right-handed coordinate system (er × et = eh).

Figure A.2 Orbit reference frame

The O-frame can be created from the E-frame by a rotation of

ζ = arctan(vθ, vϕ) = arctan(θ̇, ϕ̇ cos θ) (A.8)

about er, where arctan(y, x) is an extended arcustangens, which gives the angle φ such that
x = cos φ and y = sinφ. Expressed in J -frame components, the unit vectors are

er =

cos ϕ cos θ
sinϕ cos θ

sin θ


et = cos ζeϕ + sin ζeθ =

− sinϕ cos ζ − cos ϕ sin θ sin ζ
cos ϕ cos ζ − sinϕ sin θ sin ζ

cos θ sin ζ


eh = − sin ζeϕ + cos ζeθ =

 sinϕ sin ζ − cos ϕ sin θ cos ζ
− cos ϕ sin ζ − sinϕ sin θ cos ζ

cos θ cos ζ


(A.9)
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A.4 Orbital Elements

In astrodynamics a set of six so-called orbital elements is commonly used for describing a
body’s orbital motion in space (see figure A.3).

Figure A.3 Orbital motion of two bodies (mass M and m � M) in three-dimensional space

Three orbital elements describe the body’s motion within the orbital plane. Usually the
following three elements are used for this purpose:

• The semi-major axis a denotes the size of the orbit,

• the eccentricity e denotes the shape of the orbit, and

• the true anomaly f denotes the position on the orbit (the angle of the apsidal line to
the body’s position vector).

The position on the orbit can also be expressed by the true longitude θ, the mean longi-
tude Λ, the mean anomaly M , and the eccentric anomaly E.2

The orientation of the orbital plane with respect to the inertial cartesian reference frame J
is usually defined by the three Euler-angles Ω, ι, and ω:

• Ω denotes the longitude of the ascending node, as measured from the vernal
equinox,

• ι denotes the orbital plane’s angle of inclination to the ecliptic, and

• ω denotes the angle of the apsidal line to the direction of the ascending node, called the
argument of perihelion

Instead of ω the longitude of perihelion $ = Ω + ω is widely used.
2 see e.g. [70] or [13] for their definition and computation



B NSTAR Cluster Control Strategies

If an SEP spacecraft employs more than one electric thruster, the available power has to be
shared between the nThr thrusters. For the NSTAR thruster, three ways to do this – three
NSTAR cluster control strategies, A, B, and C – can be easily imagined.

NSTAR Cluster Control Strategy A: If χPav(r) < nThr ·Pmin, all thrusters are switched
off. If χPav(r) > nThr · Pmax, all thrusters run on full power level PPPU = Pmax.

If nThr · Pmin ≤ χPav(r) ≤ nThr · Pmax, the power is equally shared between the thrusters.

PPPU(χ, r) =
χPav(r)

nThr

(B.1)

Thus, using equations (2.49),

ṁP(χ, r) = 0.74343 · nThr + 0.20951 · χPav(r) + 0.25205
χ2P 2

av(r)
nThr

(B.2a)

F (χ, r) = −3.4318 · nThr + 37.365 · χPav(r) (B.2b)

NSTAR Cluster Control Strategy B: If χPav(r) < Pmin, all thrusters are switched off.
If χPav(r) > nThr · Pmax, all thrusters run on full power level PPPU = Pmax.

If Pmin ≤ χPav(r) ≤ nThr · Pmax, a number

nThr,full(χ, r) = floor
(

χPav(r)
nThr · Pmax

)
(B.3)

of thrusters1 run on full power level Pmax and one thruster runs with the remaining power

PPPU,rem(χ, r) = χPav(r)− nThr,full(χ, r) · Pmax (B.4)

as long as PPPU,rem(χ, r) > Pmin. Thus, using equations (2.49),

ṁP(χ, r) = 2.1707 · nThr,full(χ, r) (B.5a)

+ 0.74343 + 0.20951 · PPPU,rem(χ, r) + 0.25205 · P 2
PPU,rem(χ, r)

F (χ, r) = 71.298 · nThr,full(χ, r) (B.5b)
− 3.4318 + 37.365 · PPPU,rem(χ, r)

NSTAR Cluster Control Strategy C: If χPav(r) < Pmin, all thrusters are switched off.
If χPav(r) > nThr · Pmax, all thrusters run on full power level PPPU = Pmax.

If Pmin ≤ χPav(r) ≤ nThr · Pmax, a number

nThr,opt(χ, r) = floor
(

χPav(r)
nThr · Popt

)
(B.6)

1 floor(x) is the largest integer number that is smaller than x
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of thrusters could be run on the optimal power level Popt = 1.8337 kW, where Isp = Ispmax.
However, if χPav(r) > nThr,opt(χ, r) · Pmax, one more thruster must be used2:

nThr,opt(χ, r) = ceil
(

χPav(r)
nThr · Popt

)
(B.7)

Now, χPav(r) is split among the nThr,opt(χ, r) thrusters, i.e.

PPPU(χ, r) =
χPav(r)

nThr,opt(χ, r)
(B.8)

Thus, using equations (2.49),

ṁP(χ, r) = 0.74343 · nThr,opt(χ, r) + 0.20951 · χPav(r) (B.9a)

+ 0.25205
χ2P 2

av(r)
nThr,opt(χ, r)

F (χ, r) = −3.4318 · nThr,opt(χ, r) + 37.365 · χPav(r) (B.9b)

Figure B.1 Dependence of power levels, thrust, and specific impulse on solar distance for a cluster
of NSTAR thrusters (nThr = 10, κ = 2, PSys = 10 kW, NSTAR cluster control strategies
A, B, and C, see text)

Figure B.1 shows that control strategy A is not reasonable, since the specific impulse decreases
rapidly for Pav < nThr · Pmax and cuts off for r & 1.83 AU. Control strategies B and C give
much better results, those of control strategy C being slightly better. There might be slightly
better NSTAR cluster control strategies than the ones elaborated herein. However, for the
objectives of this work, control strategy C is acceptable and has been used for all calculations
involving NSTAR clusters.
2 if the excessive power should not be discarded; ceil(x) is the smallest integer number that is larger than x



C Locally Optimal Spacecraft Steering

Semi-major Axis: To increase the semi-major axis a with a maximum rate, the thrust
vector has to be along the direction defined by

ka = e sin fer +
p

r
et (C.1)

To decrease a with a maximum rate, the thrust vector has to be along the direction defined
by −ka.

Eccentricity: To increase the eccentricity e with a maximum rate, the thrust vector has to
be along the direction defined by

ke = p sin fer + [(p + r) cos f + re]et (C.2)

To decrease e with a maximum rate, the thrust vector has to be along the direction defined
by −ke.

Inclination: To increase the inclination ι with a maximum rate, the thrust vector has to
be along the direction defined by

kι = cos(ω + f)eh (C.3)

To decrease ι with a maximum rate, the thrust vector has to be along the direction defined
by −kι.

Longitude of the Ascending Node: To increase the longitude of the ascending node Ω
with a maximum rate, the thrust vector has to be along the direction defined by

kΩ = sin(ω + f)eh (C.4)

To decrease Ω with a maximum rate, the thrust vector has to be along the direction defined
by −kΩ. Equation (C.4) is only valid for inclined (ι 6= 0) orbits, since |Ω̇| → ∞ for ι → 0.

Argument of Perihelion: To increase the argument of perihelion ω with a maximum rate,
the thrust vector has to be along the direction defined by

kω = −p cos f

e
er +

(p + r) sin f

e
et −

r sin(ω + f) cos ι

sin ι
eh (C.5)

To decrease ω with a maximum rate, the thrust vector has to be along the direction defined
by −kω. Equation (C.5) is only valid for non-circular (e 6= 0) inclined (ι 6= 0) orbits, since
|ω̇| → ∞ for e → 0 and for ι → 0.
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True Anomaly: For a change of the true anomaly with a maximum rate, no suitable local
steering law can be derived. This is reasonable, if equation (3.3f) is examined: It can be
seen that even in the absence of a disturbing and/or propulsive acceleration acting on the
body, the true anomaly is changing with ḟ = h/r2. Apart from this term, ḟ can only be
changed by an in-plane acceleration. However, any in-plane acceleration results in ω̇ = −ḟ ,
so that ϕ̇ = Ω̇ + ω̇ + ḟ remains unchanged. Thus, increasing/decreasing ϕ̇ is better done by
increasing/descreasing h/r2, i.e. by spiralling inwards/outwards.



D InTrance Program Overview

To give a detailed program description of the ”InTrance” program (Intelligent Trajectory
optimization using neurocontroller evolution) can not be within the scope of this work but of
a (not yet existing) InTrance user manual. However, this appendix gives a short overview of
the implemented program functionalities (section D.1), the input files that are required for
trajectory optimization and the output files that are produced by the program (section D.2).

InTrance is written with Microsoft Visual C++ 6.0 to run under the DOS environment of
any Microsoft Windows operating system. Nevertheless, only standard C++ and no PC- or
Windows-specific functions are used, so that InTrance should also compile without any mod-
ification under all operating systems for which a C++ compiler is available. At the bottom
of InTrance, extended versions of the astrodynamical and mathematical routines (vectors,
matrices, numerical integration methods, etc.) provided by Montenbruck et al. [64, 65] are
used.

D.1 Functionalities

InTrance implements the following functionalities that can be selected through the InTrance
input file (see section D.2):

• optimize an interplanetary rendezvous, fly-by, or orbit transfer trajectory for a solar
sail, SEP, or NEP spacecraft

• evaluate a given chromosome

• evaluate the performance of a given NC for other launch dates

• evaluate the performance of a given NC under input noise, network noise, and disturbing
forces that are acting on the spacecraft

• evaluate a control vector history

The command to run the program is simply:

InTrance <InTrance input file>.

D.2 Input and Output Files

D.2.1 Overview

All program parameters are passed to the program through a set of input files that are specified
in the main ”InTrance input file”. This allows the subsequent execution of different tasks in
batch mode. Figure D.1 gives a sketch for the most important functionality: trajectory
optimization.



130 InTrance Program Overview

�
�

�
�simulation parameter file

�
�

�
�spacecraft parameter file

�
�

�
�NC definition file

�
�

�
�EA parameter file

�
�

�
�InTrance input file

�� �- InTrance

�
�

�
�simulation data file �

�
�

�
�trajectory data file �

�
�

�
�VRML file �

�
�

�
�control vector history file �

�
�

�
�best chromosome file �

�
�

�
�InTrance report file �

?

Figure D.1 InTrance input and output files for trajectory optimization

D.2.2 The InTrance Input File

The InTrance input file determines the functionality that has to be executed by the InTrance
program and specifies the names of the required input and output files. An example file is
printed below. All parameters and options are explained by the comments that are included
in the file.

// purpose of this file

InTrance 1.1 input file

// seed for C++ (pseudo-)random number generation

1

// input parameters

// command (must be

// (1) "optimize NC" or

// (2) "evaluate NC" or

// (3) "evaluate NC LDF" or

// (4) "evaluate NC input noise" or

// (5) "evaluate NC network noise" or

// (6) "evaluate disturbing acceleration" or

// (7) "evaluate control vector history")

// ===== in case of "optimize NC" =====

// <line 1> "optimize NC"

// input files:

// <line 2> name of the simulation parameter file

// <line 3> name of the spacecraft parameter file

// <line 4> name of the NC definition file

// <line 5> name of the EA parameter file

// <line 6> in case of a warm start: name of the chromosome file

// in case of a cold start: "cold start"

// output files:

// <line 7> name of the simulation data file (*.csv)

// <line 8> name of the trajectory data file (*.dat)

// <line 9> name of the VRML file (*.wrl)

// <line 10> name of the control vector history file

// <line 11> name of the best chromosome file

// <line 12> name of the InTrance report file

// ===== in case of "evaluate NC" =====

// <line 1> "evaluate NC"

// input files:

// <line 2> name of the simulation parameter file

// <line 3> name of the spacecraft parameter file

// <line 4> name of the NC definition file

// <line 5> name of the EA parameter file

// <line 6> name of the chromosome file

// output files:

// <line 7> name of the simulation data file (*.csv)

// <line 8> name of the trajectory data file (*.dat)

// <line 9> name of the VRML file (*.wrl)

// <line 10> name of the control vector history file

// ===== in case of "evaluate NC temporal" =====

// <line 1> "evaluate NC LDF"

// <line 2> number of time steps

// <line 3> number of evaluations per step

// input files:

// <line 4> name of the simulation parameter file

// <line 5> name of the spacecraft parameter file

// <line 6> name of the NC definition file

// <line 7> name of the EA parameter file

// <line 8> name of the chromosome file
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// output file:

// <line 9> name of the evaluation output file (*.csv)

// ===== in case of "evaluate NC input noise" =====

// <line 1> "evaluate NC input noise"

// <line 2> minimum NC input noise

// <line 3> maximum NC input noise

// <line 4> number of steps

// <line 5> number of evaluations per step

// input files:

// <line 6> name of the simulation parameter file

// <line 7> name of the spacecraft parameter file

// <line 8> name of the NC definition file

// <line 9> name of the EA parameter file

// <line 10> name of the chromosome file

// output file:

// <line 11> name of the evaluation output file (*.csv)

// ===== in case of "evaluate NC network noise" =====

// <line 1> "evaluate NC network noise"

// <line 2> minimum NC network noise

// <line 3> maximum NC network noise

// <line 4> number of steps

// <line 5> number of evaluations per step

// input files:

// <line 6> name of the simulation parameter file

// <line 7> name of the spacecraft parameter file

// <line 8> name of the NC definition file

// <line 9> name of the EA parameter file

// <line 10> name of the chromosome file

// output file:

// <line 11> name of the evaluation output file (*.csv)

// ===== in case of "evaluate disturbing acceleration" =====

// <line 1> "evaluate disturbing acceleration"

// <line 2> minimum disturbing acceleration

// <line 3> maximum disturbing acceleration

// <line 4> number of steps

// <line 5> number of evaluations per step

// input files:

// <line 6> name of the simulation parameter file

// <line 7> name of the spacecraft parameter file

// <line 8> name of the NC definition file

// <line 9> name of the EA parameter file

// <line 10> name of the chromosome file

// output file:

// <line 11> name of the evaluation output file (*.csv)

// ===== in case of "evaluate control vector history" =====

// <line 1> "evaluate control vector history"

// input files:

// <line 2> name of the simulation parameter file

// <line 3> name of the spacecraft parameter file

// <line 4> name of the control vector history file

// output files:

// <line 5> name of the simulation data file (*.csv)

// <line 6> name of the trajectory data file (*.dat)

// <line 7> name of the VRML file (*.wrl)

optimize NC

default.sim

default.scp

default.top

default.eap

cold start

default.csv

default.dat

default.wrl

default.ang

default.eac

default.rep

// don’t change these comments!

D.2.3 The Simulation Parameter File

The simulation parameter file determines the simulation parameters and specifies the opti-
mization problem. An example file is printed below. All parameters and options are explained
by the comments that are included in the file.

// purpose of this file

InTrance 1.1 simulation parameter file

// minimum simulation start time (earliest launch date) [modified julian date]

52654.5

// maximum simulation start time (latest launch date) [modified julian date]

52654.5

// integration interval [days]

600.0

// number of equidistant output steps [days]

30

// minimum number of output points

600

// initial state (must be

// (1) "body" or

// (2) "orbit")

// ===== in case of "body" =====

// <line 1> "body"

// <line 2> name of initial body (e.g. "earth")

// <line 3> minimum launch velocity [km/s]

// <line 4> maximum launch velocity [km/s]

// <line 5> minimum azimuth of launch velocity vector [rad]

// <line 6> maximum azimuth of launch velocity vector [rad]

// <line 7> minimum elevation of launch velocity vector [rad]

// <line 8> maximum elevation of launch velocity vector [rad]

// ===== in case of "orbit" =====

// <line 1> "orbit"

// <line 2> a (semi-major axis) [AU]

// <line 3> e (eccentricity)

// <line 4> i (inclination) [rad]

// <line 5> Omega (longitude of the ascending node) [rad]

// <line 6> omega (argument of perihelion) [rad]

// <line 7> M (mean anomaly) [rad]

// <line 8> minimum launch velocity [km/s]

// <line 9> maximum launch velocity [km/s]

// <line 10> minimum azimuth of launch velocity vector [rad]

// <line 11> maximum azimuth of launch velocity vector [rad]

// <line 12> minimum elevation of launch velocity vector [rad]

// <line 13> maximum elevation of launch velocity vector [rad]

body

earth

0.0

0.0
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0.0

0.0

0.0

0.0

// target state (must be

// (1) "body rendezvous" or

// (2) "body fly-by" or

// (3) "body orbit rendezvous" or

// (4) "body orbit fly-by" or

// (5) "free orbit rendezvous" or

// (6) "free orbit fly-by")

// ===== in case of "body rendezvous" =====

// <line 1> "body rendezvous"

// <line 2> name of target body (e.g. "mars")

// <line 3> maximum final distance to target body [km]

// <line 4> maximum final relative velocity to target body [km/s]

// ===== in case of "body fly-by" =====

// <line 1> "body fly-by"

// <line 2> name of target body (e.g. "mars")

// <line 3> maximum final distance to target body [km]

// ===== in case of "body orbit rendezvous" =====

// <line 1> "body orbit rendezvous"

// <line 2> name of target orbit (e.g. "mars")

// <line 3> maximum final distance to (virtual) target body in specified orbit [km]

// <line 4> maximum final relative velocity to (virtual) target body in specified orbit [km/s]

// ===== in case of "body orbit fly-by" =====

// <line 1> "body orbit fly-by"

// <line 2> name of target orbit (e.g. "mars")

// <line 3> maximum final distance to (virtual) target body in specified orbit [km]

// ===== in case of "free orbit rendezvous" =====

// <line 1> "free orbit rendezvous"

// <line 2> a (semi-major axis) [AU]

// <line 3> e (eccentricity)

// <line 4> i (inclination) [rad]

// <line 5> Omega (longitude of the ascending node) [rad]

// <line 6> omega (argument of perihelion) [rad]

// <line 7> maximum final distance to (virtual) target body in specified orbit [km]

// <line 8> maximum final relative velocity to (virtual) target body in specified orbit [km/s]

// ===== in case of "free orbit fly-by" =====

// <line 1> "free orbit fly-by"

// <line 2> a (semi-major axis) [AU]

// <line 3> e (eccentricity)

// <line 4> i (inclination) [rad]

// <line 5> Omega (longitude of the ascending node) [rad]

// <line 6> omega (argument of perihelion) [rad]

// <line 7> maximum final distance to (virtual) target body in specified orbit [km]

body rendezvous

mercury

100000.0

0.1

// optimization goal (must be

// (1) "minimum transfer time" or

// (2) "minimum propellant mass")

minimum transfer time

// disturbing acceleration (standard deviation) [mm/s^2]

0.0

// minimum solar distance [AU]

0.1

// DES solver (must be

// (1) "RK4" or

// (2) "RKF54" or

// (3) "DOPRI8" or

// (4) "DESG" or

// (5) "GJ4P" (only for solar sailcraft))

RKF54

// maximum relative DES solver error

1e-6

// maximum absolute DES solver error

1e-6

// don’t change these comments!

D.2.4 The Spacecraft Parameter File

The spacecraft parameter file specifies the spacecraft. An example file for a spacecraft with an
ideal solar sail and for a spacecraft with SEP are printed below. All parameters and options
are explained by the comments that are included in the file.

// purpose of this file

InTrance 1.1 spacecraft parameter file

// type of spacecraft (must be

// (1) "solar sail" or

// (2) "NEP" or

// (3) "SEP")
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// ===== in case of "solar sail" ====

// <line 1> "solar sail"

// <line 2> "lightness number" or "characteristic acceleration"

// ----- in case of "lightness number" -----

// <line 2> "lightness number"

// <line 3> lightness number

// ----- in case of "characteristic acceleration" -----

// <line 2> "characteristic acceleration"

// <line 3> characteristic acceleration [mm/s^2]

// <line 4> optical sail model (must be "ideal sail" or "real sail")

// ----- in case of "ideal sail" -----

// <line 4> "ideal sail"

// ----- in case of "real sail" -----

// <line 4> "real sail"

// <line 5> reflection coefficient

// <line 6> coefficient for specular reflection

// <line 7> front side emission coefficient

// <line 8> back side emission coefficient

// <line 9> front side non-Lambertian coefficient

// <line 10> back side non-Lambertian coefficient

// <line 11> reflection coefficient annual rate [-%/yr]

// <line 12> coefficient for specular reflection annual rate [-%/yr]

// <line 13> front side emission coefficient annual rate [-%/yr]

// <line 14> back side emission coefficient annual rate [-%/yr]

// <line 15> front side non-Lambertian coefficient annual rate [-%/yr]

// <line 16> back side non-Lambertian coefficient annual rate [-%/yr]

// ===== in case of "NEP" =====

// <line 1> "NEP"

// <line 2> spacecraft dry mass [kg]

// <line 3> minimum propellant mass [kg]

// <line 4> maximum propellant mass [kg]

// <line 5> maximum thrust [N]

// <line 6> specific impulse [s]

// <line 7> throttle type (must be "throttle on/off" or "throttle variable")

// ===== in case of "SEP" =====

// <line 1> "SEP"

// <line 2> spacecraft mass [kg]

// <line 3> minimum propellant mass [kg]

// <line 4> maximum propellant mass [kg]

// <line 5> solar array(s) characteristic power P(1AU) [kW]

// <line 6> variation (exponent) p of solar array power with solar distance r => P(r)/P(1AU) ~ (1/r)^p

// <line 7> number of 2.0 kW (NSTAR) thrusters

// <line 8> throttle type (must be "throttle on/off" or "throttle variable")

solar sail

characteristic acceleration

0.55

ideal sail

// don’t change these comments!

// purpose of this file

InTrance 1.1 spacecraft parameter file

...

// ===== in case of "SEP" =====

// <line 1> "SEP"

// <line 2> spacecraft mass [kg]

// <line 3> minimum propellant mass [kg]

// <line 4> maximum propellant mass [kg]

// <line 5> solar array(s) characteristic power P(1AU) [kW]

// <line 6> variation (exponent) p of solar array power with solar distance r => P(r)/P(1AU) ~ (1/r)^p

// <line 7> number of 2.0 kW (NSTAR) thrusters

// <line 8> throttle type (must be "throttle on/off" or "throttle variable")

SEP

150.0

20.0

30.0

2.0

2.0

1.0

throttle variable

// don’t change these comments!

D.2.5 The NC Definition File

The NC definition file specifies the topology of the used NC as well as the NC’s input noise
and internal network noise. An example file with robust default values is printed below. All
options are explained by the comments that are included in the file.

// purpose of this file

InTrance 1.1 neurocontroller definition file

// input type (must be

// (1) "cartesian coordinates " or
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// (2) "polar coordinates" or

// (3) "orbital elements" or

// (4) "cartesian coordinates and polar coordinates" or

// (5) "cartesian coordinates and orbital elements" or

// (6) "polar coordinates and orbital elements" or

// (7) "cartesian coordinates, polar coordinates and orbital elements")

cartesian coordinates

// number of input neurons

// for input type (1), (2) and (3) 6 or 12 input neurons have to be used for solar sailcraft and

// 7 or 13 input neurons for SEP and NEP spacecraft

// for input type (4), (5) and (6) 12 or 24 input neurons have to be used for solar sailcraft and

// 13 or 25 input neurons for SEP and NEP spacecraft

// for input type (7) 18 or 36 input neurons have to be used for solar sailcraft and

// 19 or 37 input neurons for SEP and NEP spacecraft

12

// number of hidden layers

1

// number of neurons in the hidden layers (1 line per layer)

30

// number of output neurons

// 10 (solar sailcraft) or 11 (SEP and NEP spacecraft) if the NC should implement "LSL minimize maximize" steering

// 5 (solar sailcraft) or 6 (SEP and NEP spacecraft) if the NC should implement "LSL optimize" steering

// 3 (solar sailcraft) or 4 (SEP and NEP spacecraft) if the NC should implement direct steering

3

// input noise (standard deviation)

0.0

// network noise (standard deviation)

0.0

// don’t change these comments!

D.2.6 The EA Parameter File

The EA parameter file specifies the parameters of the EA that is used for the evolution of
the NC and the initial state of the spacecraft. An example file with robust default values is
printed below.

// purpose of this file

InTrance 1.1 evolutionary algorithm parameter file

// size of initial search space (hypercube)

1.0

// search space shrinking factor

0.5

// population size

50

// number of search space scan epochs

10

// mutation probability per chromosome

0.8

// selection pressure on transfer time / mass

0.01

// don’t change these comments!

D.2.7 The Simulation Data File

The simulation data file contains all relevant physical data (states, velocities, masses, controls,
etc.) for each time step of the best trajectory found by InTrance. A detailed description of
the simulation data file is beyond the scope of this work and has to be part of an InTrance
user manual. The simulation data file is a so-called ”comma separated textfile” that can be
displayed using Microsoft Excel1, if it has the extension ”csv”.

D.2.8 The Trajectory Data File

The trajectory data file is a ”light” version of the simulation data file that can be displayed
using standard data visualization tools like Amtec Tecplot2. Therefore, the trajectory data

1 http://www.microsoft.com/office/excel/default.asp
2 http://www.amtec.com

http://www.microsoft.com/office/excel/default.asp
http://www.amtec.com
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file must have the extension ”dat”.

D.2.9 The VRML File

The VRML (Virtual Reality Modeling Language) file contains a dree-dimensional animation
of the best trajectory found by InTrance. It can be displayed using a VRML internet browser
plug-in3. Therefore, the VRML file must have the extension ”wrl”.

D.2.10 The Control Vector History File

The control vector history file contains the control vector history for the best solution found
by InTrance. The first row denotes the number of time steps. For solar sailcraft, the first
column denotes the time step as MJD. The second column denotes the sail clock angle and
the third column denotes the sail cone angle. For EP spacecraft, the first column denotes
again the time step as MJD, the second column denotes the thrust clock angle, the third
column denotes the thrust cone angle, and the fourth column denotes the throttle.

D.2.11 The (Best) Chromosome File

The chromosome file contains the best solution found by InTrance. The first row denotes the
number of optimization parameters (NC parameters and additional parameters). The last
five parameters are associated with the launch date, the launch velocity, the launch azimuth,
the launch elevation and the initial propellant mass.

D.2.12 The InTrance Report File

The InTrance report file contains a record of the EA progress, mirroring the information that
is displayed on the screen. A detailed description of the report file is beyond the scope of this
work and has to be part of an InTrance user manual.

3 The generated files have been tested using the ”Cortona VRML Client 4.0”, freely available at
http://www.parallelgraphics.com

http://www.parallelgraphics.com
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