Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Bong Wie

Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeoffs for Impacting and Deflecting Asteroid 99942 Apophis

 Bernd Dachwald
 German Aerospace Center (DLR)

 Mission Operations Section
 Oberpfaffenhofen, 82234 Wessling, Germany

 bernd. dachwald@dlr.de
 German Aerospace Center (DLR)

 Ralph Kahle
 Space Flight Technology Section

 Oberpfaffenhofen, 82234 Wessling, Germany
 German Aerospace Center (DLR)

 space Flight Technology Section
 Oberpfaffenhofen, 82234 Wessling, Germany

 ralph.kahle@dlr.de
 German Aerospace Center (DLR)

Arizona State University Department of Mechanical & Aerospace Engineering Tempe, AZ 85287, USA borg, wie@asu.edu

AIAA/AAS Astrodynamics Specialist Conference 21–24 August 2006, Keystone, CO

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Outline

Introduction

The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection Scenario (I) Kinetic Energy Impacts Solar Sail Force Model Simulation Model Evolutionary Neurocontrol

Mission Design

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

- The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection Scenario (I) Kinetic Energy Impacts Solar Sail Force Model
- Simulation Model Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Near-Earth Asteroids (NEAs)

- The orbits of NEAs intersect or pass near the orbit of Earth
- ▶ 838 NEAs with a diameter $d \gtrsim 1 \, {\rm km}$ are currently known
- The entire population contains perhaps more than 1 000 objects of this size
- ► All NEAs with MOID ≤ 0.05 AU and d ≥ 200 m are Potentially Hazardous Asteroids (PHAs)
- \blacktriangleright There are currently 790 known PHAs, 161 of them with $d\gtrsim 1\,{\rm km}$
- Even asteroids that do not intersect Earth's orbit may evolve into Earth-crossers, since their orbits are chaotic, having a relatively short dynamical lifetime (~ 10⁷ years)

Bernd Dachwald Ralph Kahle Bong Wie

Outline

- Introduction
- The Hazard from Near-Earth Objects
- The Case of 99942 Apophis
- Kinetic Energy Impactor Deflection Scenario (I) Kinetic Energy Impacts Solar Sail Force Model
- Simulation Model
- Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

The Case of 99942 Apophis

- In June 2004, a NEA with a diameter of about 320 m was discovered (firstly designated 2004 MN4 and later 99942 Apophis)
- Very close encounter with Earth on 13 Apr 2029
- With a non-negligible probability subsequent very close encounter or even impact on 13 Apr 2036 or later
- Currently estimated probability that Apophis impacts the Earth in 2036 is 1/45 000
- Earth impact velocity of about 12.6 km/s
- Released energy would equal about 875 Megatons of TNT
- ▶ Whether or not Apophis will impact the Earth in 2036 or later will be decided by its close encounter in 2029. (If the asteroid passes through one of several so-called "gravitational keyholes" ($\emptyset \approx 600 \text{ m}$), it will get into a resonant orbit and impact the Earth in one of its later encounters, if no counter-measures are taken)

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

The Hazard from Near-Earth Objects The Case of 99942 Apophis

Kinetic Energy Impactor Deflection Scenario (I) Kinetic Energy Impacts Solar Sail Force Model Simulation Model Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Solar Sail Kinetic Energy Impactors (KEIs)

(Multiple) KEIs impact Apophis at perihelion from a trajectory that is retrograde w.r.t. Apophis' orbit ($\Rightarrow v_{imp} \approx 75 \text{ km/s}$)

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection

Scenario (I)

Kinetic Energy Impacts Solar Sail Force Model Simulation Model Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Scenario I (fictional)

 In 2013 (very favorable radar and optical observations), it is found that in its 2029-encounter Apophis is likely to fly through the 2036-keyhole ⇒ resonant return to hit the Earth in 2036

2. At 01 Jan 2020, a solar sail KEI is launched from Earth

- $160 \text{ m} \times 160 \text{ m}$, 168 kg solar sail assembly
- 150 kg impactor
- ► $a_c = 0.5 \, \text{mm/s}^2$
- ► $T_{\rm lim} = 240^{\circ}{\rm C}$
- $C_3 = 0 \, \mathrm{km}^2 / \mathrm{s}^2$
- **3.** After having attained a trajectory that is retrograde to Apophis' orbit, the solar sail KEI is brought onto a collision trajectory, from where it can impact Apophis in 2026 in the case that Apophis is still likely to fly through the keyhole

- A trajectory that maximizes v_{imp}
- An exactly retrograde orbit (ERO) that encounters Apophis at every perihelion and aphelion passage

Bernd Dachwald Ralph Kahle Bong Wie

Outline

- Introduction
- The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection
- Scenario (I)
- Kinetic Energy Impacts Solar Sail Force Model Simulation Model Evolutionary Neurocontrol
- Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Scenario I (fictional)

- In 2013 (very favorable radar and optical observations), it is found that in its 2029-encounter Apophis is likely to fly through the 2036-keyhole ⇒ resonant return to hit the Earth in 2036
- 2. At 01 Jan 2020, a solar sail KEI is launched from Earth
 - $\blacktriangleright~160\,m\,\times\,160\,m,\,168\,kg$ solar sail assembly
 - 150 kg impactor
 - $a_c = 0.5 \, \mathrm{mm/s^2}$
 - $T_{\rm lim} = 240^{\circ}{\rm C}$
 - $C_3 = 0 \, \mathrm{km}^2 / \mathrm{s}^2$
- **3.** After having attained a trajectory that is retrograde to Apophis' orbit, the solar sail KEI is brought onto a collision trajectory, from where it can impact Apophis in 2026 in the case that Apophis is still likely to fly through the keyhole

- A trajectory that maximizes v_{imp}
- An exactly retrograde orbit (ERO) that encounters Apophis at every perihelion and aphelion passage

Bernd Dachwald Ralph Kahle Bong Wie

Outline

- Introduction
- The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection Scenario (1)
- Kinetic Energy Impacts Solar Sail Force Model Simulation Model Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Scenario I (fictional)

- In 2013 (very favorable radar and optical observations), it is found that in its 2029-encounter Apophis is likely to fly through the 2036-keyhole ⇒ resonant return to hit the Earth in 2036
- 2. At 01 Jan 2020, a solar sail KEI is launched from Earth
 - $\blacktriangleright~160\,m\,\times\,160\,m,\,168\,kg$ solar sail assembly
 - 150 kg impactor
 - $a_c = 0.5 \, \mathrm{mm/s^2}$
 - $T_{\rm lim} = 240^{\circ}{\rm C}$
 - $C_3 = 0 \, \mathrm{km}^2 / \mathrm{s}^2$
- **3.** After having attained a trajectory that is retrograde to Apophis' orbit, the solar sail KEI is brought onto a collision trajectory, from where it can impact Apophis in 2026 in the case that Apophis is still likely to fly through the keyhole

- ► A trajectory that maximizes *v*_{imp}
- An exactly retrograde orbit (ERO) that encounters Apophis at every perihelion and aphelion passage

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parameters

Summary and Conclusions Impact velocity: 75.4 km/s

Bernd Dachwald Ralph Kahle Bong Wie

Outline

- Introduction
- The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection
- Scenario (I) Kinetic Energy
- Impacts Solar Sail Force Model
- Simulation Model
- Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Kinetic Energy Impacts Issues

- Effective impulse imparted to the asteroid is sum of pure kinetic impulse of the impactor plus impulse due to "thrust" of material being ejected from impact crater
- Last term can be very significant, but magnitude depends strongly upon density, yield strength, porosity, impactor mass, impact velocity

 $\Delta v = \xi rac{m_{
m KEI}}{m_{
m Apophis}} v_{
m imp}$

- Enhancement factor for hard rock: $\xi \approx 2$
- Enhancement factor for soft rock: $\xi \approx 4$
- Enhancement factor for porous asteroids: $\xi \approx 1.16$

$$\Rightarrow \Delta v = 3.73 \times 10^{-9} v_{imp}$$

- Values are associated with large uncertainty ⇒ accurate modeling and prediction of ejecta impulse is critical part of any kinetic-impact approach
- Risk that impact could result in fragmentation of the asteroid (depends upon its composition and structure)

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection Scenario (I) Kinetic Energy Impacts Solar Sail Force

Model Simulation Model Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

The Non-Perfectly Reflecting Solar Sail

The non-perfectly reflecting solar sail model parameterizes the optical behavior of the sail film by the optical coefficient set

$$\mathcal{P} = \{\rho, \boldsymbol{s}, \varepsilon_{\mathrm{f}}, \varepsilon_{\mathrm{b}}, B_{\mathrm{f}}, B_{\mathrm{b}}\}$$

The optical coefficients for a solar sail with a highly reflective aluminum-coated front side and with a highly emissive chromium-coated back side are:

$$\mathcal{P}_{\mathsf{AI|Cr}} = \{ \rho = 0.88, s = 0.94, \varepsilon_{\mathsf{f}} = 0.05, \\ \varepsilon_{\mathsf{b}} = 0.55, B_{\mathsf{f}} = 0.79, B_{\mathsf{b}} = 0.55 \}$$

 S_0 : solar constant (1368 W/m²)

c: speed of light in vacuum

r: radius

r₀: 1 astronomical unit (1 AU)

 ρ : reflection coefficient

s: specular reflection factor

 $\varepsilon_{\rm f}$ and $\varepsilon_{\rm b}$: emission coefficients of the front and back side, respectively

 $B_{\rm f}$ and $B_{\rm b}$: non-Lambertian coefficients of the front and back side, respectively

Bernd Dachwald Ralph Kahle Bong Wie

Outline

- Introduction
- The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection Scenario (1)
- Kinetic Energy Impacts
- Solar Sail Force Model
- Simulation Model
- Evolutionary Neurocontrol
- Mission Design
- Variation of Mission Design Parameters
- Summary and Conclusions

Simulation Model

Considerations for high-precision trajectory control:

- Solar sail bends and wrinkles, depending on actual solar sail design
- Gravitational forces of all celestial bodies
- Reflected light from close celestial bodies
- Solar wind
- Finiteness of solar disk
- Finite low-precision attitude control maneuvers
- Aberration of solar radiation (Poynting-Robertson effect)
- Relativistic corrections required for final targeting phase

Allowed simplifications for mission feasibility analysis:

- Solar sail is a flat plate
- Solar sail is moving under sole influence of solar gravitation and radiation

- Sun is a point mass and a point light source
- Solar sail attitude can be changed instantaneously

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bernd Dachwald Ralph Kahle Bong Wie

Outline

- Introduction
- The Hazard from Near-Earth Objects The Case of 99942 Apophis Kinetic Energy Impactor Deflection Scenario (I) Kinetic Energy Impacts Solar Sail Force Model
- Simulation Model

Evolutionary Neurocontrol

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Evolutionary Neurocontrol (ENC)

A smart global trajectory optimization method

- We used ENC to calculate near-globally optimal trajectories
- ENC is based on a combination of artificial neural networks with evolutionary algorithms
- ENC attacks trajectory optimization problems from the perspective of artificial intelligence and machine learning
- ENC was implemented within a low-thrust trajectory optimization program called InTrance (Intelligent Trajectory optimization using neurocontroller evolution)
- InTrance requires only the target body/state and intervals for the initial conditions as input to find a near-globally optimal trajectory for the specified problem
- InTrance works without an initial guess and does not require the attendance of a trajectory optimization expert

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario I

(fictional)

- In 2013 (very favorable radar and optical observations), it is found that in its 2029-encounter Apophis is likely to fly through the 2036-keyhole ⇒ resonant return to hit the Earth in 2036
- 2. At 01 Jan 2020, a solar sail KEI is launched from Earth
 - $\blacktriangleright~160\mbox{ m}\,\times\,160\mbox{ m},\,168\mbox{ kg}$ solar sail assembly
 - 150 kg impactor
 - $a_c = 0.5 \, \mathrm{mm/s^2}$
 - $T_{\rm lim} = 240^{\circ}{\rm C}$
 - $C_3 = 0 \, \mathrm{km}^2 / \mathrm{s}^2$
- 3. After having attained a trajectory that is retrograde to Apophis' orbit, the solar sail KEI is brought onto a collision trajectory, from where it can impact Apophis in 2026 in the case that Apophis is still likely to fly through the keyhole

- ► A trajectory that maximizes *v*_{imp}
- An exactly retrograde orbit (ERO) that encounters Apophis at every perihelion and aphelion passage

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Orbit Cranking Phase

Trajectory, Δi_{\uparrow} -(r, a)-t-diagram, and solar sail control angles

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

0.2

-0.2

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Targeting Phase

Trajectory that maximizes v_{imp} vs. exactly retrograde orbit

Trajectory that maximizes v_{imp}

Transfer trajectory to exactly retrograde orbit (ERO)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- From an ERO, the solar sail KEI encounters the target at every perihelion and aphelion passage
- The slightly lower achievable impact velocity from an ERO is compensated by the flexibility in choosing the impact date

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Targeting Phase

Trajectory that maximizes v_{imp} vs. exactly retrograde orbit

	Days	KEI head-on	Worst case	Deflection	
Impact	before	impact	velocity change	from a	
Date	2029-	velocity	from a single	single KEI	
	encounter	[km/s]	KEI [mm/s]	[km]	
From trajectory that maximizes the impact velocity:					
02 Jan 2026	1198.0	75.38	0.2811	93.2	
22 Nov 2026	874.4	77.91	0.2905	71.6	
11 Oct 2027	550.8	80.28	0.2993	48.7	
30 Aug 2028	227.2	80.95	0.3018	23.3	
From exactly retrograde orbit:					
02 Jan 2026	1198.0	75.26	0.2806	93.2	
22 Nov 2026	874.4	75.26	0.2806	69.5	
11 Oct 2027	550.8	75.26	0.2806	45.8	
30 Aug 2028	227.2	75.26	0.2806	21.9	
Parabolic limit case:					
02 Jan 2026	1198.0	86.39	0.3221	107.0	
22 Nov 2026	874.4	86.39	0.3221	79.8	
11 Oct 2027	550.8	86.39	0.3221	52.5	
30 Aug 2028	227.2	86.39	0.3221	25.1	

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II)

Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario II (fictional)

- Impact is aborted before 2029-encounter because it is found that Apophis is not likely anymore to fly through the keyhole
 - Impact on 02 Jan 2026 is changed into a close flyby
 - Instead of aborting the mission, however, the solar sail KEI is brought to a trajectory that maximizes the deflection for a post-2029-encounter impact, for the case that this might be necessary
- 5. After close Earth-encounter on 13 Apr 2029 it is found that Apophis really flew through the 2036-keyhole \Rightarrow resonant return to hit the Earth on 13 Apr 2036.
- 6. The solar sail KEI impacts the asteroid shortly after the 2029-encounter on 11 Jun 2029
- **6b.** Alternatively, for comparison, after launch on 01 Jan 2020, the solar sail KEI is directly sent onto a collision trajectory that maximizes v_{imp} on 11 Jun 2029

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II)

Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario II (fictional)

- Impact is aborted before 2029-encounter because it is found that Apophis is not likely anymore to fly through the keyhole
 - Impact on 02 Jan 2026 is changed into a close flyby
 - Instead of aborting the mission, however, the solar sail KEI is brought to a trajectory that maximizes the deflection for a post-2029-encounter impact, for the case that this might be necessary
- 5. After close Earth-encounter on 13 Apr 2029 it is found that Apophis really flew through the 2036-keyhole \Rightarrow resonant return to hit the Earth on 13 Apr 2036.
- 6. The solar sail KEI impacts the asteroid shortly after the 2029-encounter on 11 Jun 2029
- **6b.** Alternatively, for comparison, after launch on 01 Jan 2020, the solar sail KEI is directly sent onto a collision trajectory that maximizes v_{imp} on 11 Jun 2029

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II)

Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario II (fictional)

- Impact is aborted before 2029-encounter because it is found that Apophis is not likely anymore to fly through the keyhole
 - Impact on 02 Jan 2026 is changed into a close flyby
 - Instead of aborting the mission, however, the solar sail KEI is brought to a trajectory that maximizes the deflection for a post-2029-encounter impact, for the case that this might be necessary
- 5. After close Earth-encounter on 13 Apr 2029 it is found that Apophis really flew through the 2036-keyhole \Rightarrow resonant return to hit the Earth on 13 Apr 2036.
- 6. The solar sail KEI impacts the asteroid shortly after the 2029-encounter on 11 Jun 2029
- **6b.** Alternatively, for comparison, after launch on 01 Jan 2020, the solar sail KEI is directly sent onto a collision trajectory that maximizes v_{imp} on 11 Jun 2029

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II)

Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario II (fictional)

- Impact is aborted before 2029-encounter because it is found that Apophis is not likely anymore to fly through the keyhole
 - Impact on 02 Jan 2026 is changed into a close flyby
 - Instead of aborting the mission, however, the solar sail KEI is brought to a trajectory that maximizes the deflection for a post-2029-encounter impact, for the case that this might be necessary
- 5. After close Earth-encounter on 13 Apr 2029 it is found that Apophis really flew through the 2036-keyhole \Rightarrow resonant return to hit the Earth on 13 Apr 2036.
- 6. The solar sail KEI impacts the asteroid shortly after the 2029-encounter on 11 Jun 2029
- **6b.** Alternatively, for comparison, after launch on 01 Jan 2020, the solar sail KEI is directly sent onto a collision trajectory that maximizes v_{imp} on 11 Jun 2029

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Earth-Impacting Apophis Variations

- Kahle has generated 20 000 potential Apophis orbits by random variation of the orbital elements within the 3σ-accuracy
- Two of them have been found to collide with Earth, both during a 7:6 resonant return on 13 Apr 2036 (Ap1 and Ap2)
- We have used them as potential impact-trajectories

Comparison of Ap1's pre- and post-2029-encounter orbit Closeup of the 2029-encounter and the im-

pact (geocentric reference frame)

э

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario Step 6

Targeting trajectory for an impact on 11 Jun 2029 (impact from a pre-2029-encounter impact trajectory, i.e. 02 Jan 2026 flyby)

Sac

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Post-2029-Encounter Deflection

Required velocity change and optimal deflection angle for Ap1 and Ap2 $% \left({{\left({{{{\bf{n}}_{{\rm{s}}}}} \right)}_{{\rm{s}}}} \right)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design Pre-2029-Encounter Impact Scenario (II) Post-2029-Encounter Impact

Variation of Mission Design Parameters

Summary and Conclusions

Scenario Step 6b

Maximizing *v*_{imp} right after launch (Scenario 6b)

Impact from trajectory that maximizes the impact velocity Deflection for different numbers of KEIs (Ap1, geocentric reference frame)

- 70-75 KEIs are required for a successful deflection of Ap1
- 130-140 KEIs are required for a successful deflection of Ap2
- Assuming the worst case, 200 KEIs (63.2 mt) should be launched
- This would require 7 Delta IV Heavy, 10 Atlas 5, or 6 Ariane 5 ESC-B

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Variation of the Sail Temperature Limit

The optimal orbit-cranking semi-major axis can be approximated with an error of less than 2% by

 $ilde{a}_{
m cr,opt} pprox 1.4805 - 0.23 \cdot \ln(ilde{ au}_{
m lim})$

The maximum inclination change rate can be approximated with an error of less than 2% by

 $(\Delta i/\Delta t)_{
m max}pprox 0.0224\cdot \widetilde{a}_{
m cr,opt}^{-1.32}$

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Variation of the Sail Temperature Limit

The optimal orbit-cranking semi-major axis can be approximated with an error of less than 2% by

 $ilde{a}_{ ext{cr,opt}} pprox 1.4805 - 0.23 \cdot \ln(ilde{\mathcal{T}}_{ ext{lim}})$

The maximum inclination change rate can be approximated with an error of less than 2% by

 $(\Delta i/\Delta t)_{
m max}pprox 0.0224\cdot \widetilde{a}_{
m cr,opt}^{-1.32}$

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Variation of the Sail Temperature Limit

The optimal orbit-cranking semi-major axis can be approximated with an error of less than 2% by

 $ilde{a}_{
m cr,opt} pprox 1.4805 - 0.23 \cdot \ln(ilde{\mathcal{T}}_{
m lim})$

The maximum inclination change rate can be approximated with an error of less than 2% by

 $(\widetilde{\Delta i/\Delta t})_{\max} \approx 0.0224 \cdot \widetilde{a}_{cr,opt}^{-1.32}$

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Variation of the Sail Temperature Limit

Inclination over flight time, i(t)

Inclination over semi-major axis, i(a)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The InTrance-trajectories match the determined optimal orbit-cranking semi-major axes very closely.

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Variation of the Sail Temperature Limit

Inclination over flight time, i(t)

Inclination over semi-major axis, i(a)

The InTrance-trajectories match the determined optimal orbit-cranking semi-major axes very closely.

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Sail Temperature Limit Solar Sail Degradation

Summary and Conclusions

Variation of the Sail Temperature Limit

T_{lim}	$a_{\rm cr,opt}$	$(\Delta i/\Delta t)_{max}$	Δt_{oc}
[°C]	[AU]	$\left[deg/day ight]$	[days]
220	0.236	0.1461	1722
240	0.220	0.1648	1604
260	0.205	0.1838	1513

The time required for the orbit-cranking phase can be approximated with an error of less than 1% by

$$\widetilde{\Delta t}_{oc} pprox 765(1 - \widetilde{a}_{
m cr,opt}) + rac{166.7}{(\widetilde{\Delta i/\Delta t})_{
m max}}$$

Note that 166.7 is the required inclination change in degrees and $1 - \tilde{a}_{cr,opt}$ is the spiralling-in distance in astronomical units

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters Sail Temperature Limit

Solar Sail Degradation

Summary and Conclusions

Solar Sail Degradation Model (by Dachwald et al.)

"degradation" of optical coefficients

"degradation" of SRP force bubble

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters Sail Temperature Limit

Solar Sail

Summary and Conclusions

Solar Sail Degradation

"Half life" solar radiation dose $\hat{\Sigma}=25\,\textit{S}_{0}\!\cdot\!\text{yr}=394\,\text{TJ}/\text{m}^{2}$

	Transfer		Earliest	Calculated
Degradation	time to	Attainment	possible	deflection
factor	ERO	of ERO	Apophis impact	from a single
	[days]		Date	KEI [km]
0.0	2186	26 Dec 2025	02 Jan 2026	93.2
0.05	2395	23 Jul 2026	22 Nov 2026	69.5
0.1	2574	18 Jan 2027	11 Oct 2027	45.8
0.2	2816	17 Sep 2027	11 Oct 2027	45.8

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Summary and Conclusions

- ► A single solar sail (160 m × 160 m, 168 kg plus 150 kg impactor, a_c = 0.5 mm/s² and T_{lim} = 240°C) is a realistic option to deflect Apophis with a kinetic impact before its 2029-Earth-encounter with very high velocity from a retrograde orbit
- Only a small and thus cheap launch vehicle is required
- Conventional KEI spacecraft (chemical, electrical) is also able to prevent Apophis from flying through a 600-m keyhole in 2029
- Our solar sail KEI mission concept, however, is also able to deflect larger asteroids out of a keyhole
- Using solar sail KEIs, it is still feasible to deflect asteroids that do not pass through a keyhole before impacting Earth
- In the latter case, however, a short lead time requires many KEIs

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

KEI Mission Challenges

- The mission performance might be seriously affected by optical degradation of the sail surface, as it is expected in the extreme space environment close to the sun
- Ground and in-space tests are required due to the unknown degradation behavior of solar sails in the space environment
- ► Extreme requirements for terminal guidance prior to impact (accuracy much better than 100 m at a relative velocity of ≈ 75 km/s)
- Extreme requirements for thermal control that has to withstand very close solar distances (0.2 – 0.25 AU)

Bernd Dachwald Ralph Kahle Bong Wie

Outline

Introduction

Mission Design

Variation of Mission Design Parameters

Summary and Conclusions

Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeoffs for Impacting and Deflecting Asteroid 99942 Apophis

Bernd Dachwald

Ralph Kahle

Bong Wie

German Aerospace Center (DLR) Mission Operations Section Oberpfaffenhofen, 82234 Wessling, Germany bernd.dachwald@dlr.de

German Aerospace Center (DLR) Space Flight Technology Section Oberpfaffenhofen, 82234 Wessling, Germany ralph.kahle@dlr.de

Arizona State University Department of Mechanical & Aerospace Engineering Tempe, AZ 85287, USA borg, wie@asu.edu

Acknowledgements: The work described in this paper was funded in part by the In-Space Propulsion Technology Program, managed by NASA's Science Mission Directorate in Washington, D.C., and implemented by the In-Space Propulsion Technology Office at Marshall Space Flight Center in Huntsville, Alabama